University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering
ECE 120: Introduction to Computing

The Design of the Lab FSM

What Problem Must be Solved?

In the lab, your task is

- to build a small FSM
- to control a coin-operated vending machine.

Inputs are produced by coins.
Outputs specify

- whether a coin should be accepted, and
- whether a product should be released.

The design is extremely simple so as to
minimize the number of chips needed.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.
slide 2

Background on the Lab FSM

Prof. Doug Jones designed the original FSM for the lab.
The derivation in these slides is somewhat different from the one in Section 3.4 of the notes.*
Both approaches end up with the same design, which is what you must implement in the coming weeks.
*One is Lumetta's reverse-engineering of the design, and the other is Jones' explanation to Lumetta.

Which is which? We forget.

ECE 120: Introduction to Computing $\quad \circ 2016$ Steven S. Lumetta. All rights reserved

Background on the Physical System

Prof. Chris Schmitz designed and built the original prototype hardware, which worked well for the first few semesters.
Prof. Volodymyr Kindratenko helped to evolve the design to meet the needs of more students.
Prof. Juan José Jaramillo and
Casey Smith developed the current design to eliminate remaining issues and to enable you to do most of your work at home.

Let's Take a Look at the Physical System

What Happens When a Dime Rolls In?

What Happens When a Quarter Rolls In?

ECE 120: Introduction to Computing

- 2016 Steven S. Lumetta. All rights reserved.
side 9

The Clock Signal is Unusual

The clock signal CLK is
${ }^{\circ}$ produced by an optical sensor
${ }^{\circ}$ when a coin rolls in front of it.
As a result, CLK is

- not a square wave, and
- not even periodic!
- The high pulses are coins.
- The pulse width depends on the coin's speed.
- The cycle time is the time between coins.

ECE 120: Introduction to Computing

- 2016 Steven S. Lumetta. All rights reserved.
side 10

CLK Signal is Sufficient for Our FSM's Needs

Lab Machine as a Sequence Recognizer

A sequence recognizer looks for bit patterns in a serial input stream.
Previously, we developed a 01 sequence recognizer as an example of the difference between Mealy and Moore machines.
For the lab, we can

- treat the sequence of coins as a serial input (0 for dimes- $\$ 0.10$; 1 for quarters- $\$ 0.25$).
- then look for patterns that total $\$ 0.35$.

A Process for Developing a 01/10 Recognizer

Inputs, Output, and Notation

If T is the serial input of coin types, we
must produce product release output $\mathbf{P}=1$
whenever we see 01 or 10 .
We use the following process to
develop the sequence recognizer:

1. Create a state for each bit in each sequence.
2. Complete the transitions not used in the desired sequences.
3. Minimize by merging redundant states.

Inputs:
T 0 for dime, 1 for quarter
(transitions use black/red to denote T)
Outputs:
A 1 to accept the coin just inserted (0 to reject it, returning to the user)
P 1 to release the product
States are marked with /AP.

ECE 120: Introduction to Computing
02016 Steven S. Lumetta. All rights reserved.

Step 1: Draw States for Both Sequences

Step 2: Complete the Transitions

ECE 120: Introduction to Computing $\quad \circ 2016$ Steven S. Lumetta. All rights reserved

Step 3: Merge Redundant States	
Now we can merge redundant states. To merge states, it suffices to - find two states - with identical outputs ${ }^{\circ}$ and identical next states. Let's take a look.	
ECE 120: Introduction to Computing \quad-2016 Steven S. Lumetta. All rights reserved.	side 19

Use Human Information to Define the Representation

State Bit Definition

We need 3 bits for 5 states.
Define the state bits as follows:
Let's use human information to define the
S_{2} is T_{0}, the last coin type. representation.
S_{1} is 1 iff one or more quarters were inserted
Think about the sequence of coins that has - before the last coin ($\mathrm{T}_{-1}, \mathrm{~T}_{-2}$, and so on) been inserted into the machine.

- but after the last product release.

Let's call the last coin T_{0}.
S_{0} is 1 iff one or more dimes were inserted

- before the last coin ($\mathrm{T}_{-1}, \mathrm{~T}_{-2}$, and so on)

And the one before that T_{-1}.

- but after the last product release.

| Does that Approach Work? Check the State IDs |
| :--- | :--- |
| For DIME, the only coin since the last
 payment is a single dime.
 So we have... DIME 000
 $\mathrm{~S}_{2}=0$ (the dime) QUARTER
 $\mathrm{S}_{1}=0$ (no quarters at all) REJECTD
 $\mathrm{S}_{0}=0$ (the dime is unique) REJECTQ
 PAID |

Calculate the State ID for QUARTER

For QUARTER, the only coin since the last payment is a single quarter.

So we have...	DIME 000
$\mathrm{~S}_{2}=1$ (the quarter)	QUARTER $\mathbf{1 0 0}$
$\mathrm{S}_{1}=0$ (the quarter is unique)	REJECTD
$\mathrm{S}_{0}=0$ (no dimes at all)	REJECTQ
	PAID

ECE 120: Introduction to Computing 02016 Steven S. Lumetta. All rights reserved.
slide 26

Calculate the State ID for REJECTD

For REJECTD, we have seen two or more dimes but no quarters.
So we have...
DIME 000
$\mathrm{S}_{2}=0$ (the last dime) QUARTER 100
$\mathrm{S}_{1}=0$ (no quarters at all) REJECTD 001
$\mathrm{S}_{0}=1$ (extra dimes)
REJECTQ
PAID

Calculate the State ID for REJECTQ

For REJECTQ, we have seen two or more quarters but no dimes.

So we have...	DIME	000
$\mathrm{~S}_{2}=1$ (the last quarter)	QUARTER 100	
$\mathrm{~S}_{1}=1$ (extra quarters)	REJECTD $\mathbf{0 0 1}$	
$\mathrm{S}_{0}=\mathbf{0}$ (no dimes at all)	REJECTQ	$\mathbf{1 1 0}$
	PAID	

$\bigcirc 2016$ Steven S. Lumetta. All rights reserved.
silide 28

What is the State ID for PAID?	
For PAID, we could have gotten either coin	
last! Before the last coin, we got one or more	
of the other kind. DIME 000	
For a last quarter, we have... QUARTER 100	
$\mathrm{S}_{2}=1$ (the last quarter) REJECTD 001	
$\mathrm{S}_{1}=0$ (no extra quarters) REJECTQ 110	
$\mathrm{S}_{0}=1$ (at least one dime) PAID 101	
	stie 29

What is the State ID for PAID?

But what about a last dime?
last! Before the last coin, we got one or more of the other kind.
side 29

	DIME	000
$\mathrm{~S}_{2}=0$ (the last dime)	QUARTER	$\mathbf{1 0 0}$
$\mathrm{S}_{1}=1$ (at least one quarter)	REJECTD	$\mathbf{0 0 1}$
$\mathrm{S}_{0}=0$ (no extra dimes)	REJECTQ	$\mathbf{1 1 0}$
So we have two bit patterns!	PAID	$\mathbf{1 0 1}$
		$\mathbf{0 1 0}$

ECE 120: Introduction to Computing
O 2016 Steven S. Lumetta. All rights reserved.
slide 30

