

slide 3

What Purpose Does the Lab Serve?

(from Prof. Doug Jones' view)

Help students to make the connection between lines and boxes on paper and wires and chips in a real system.

(from Prof. Steve Lumetta's view)

Help students to realize that the knowledge they have gained in ECE120 enables them to build real systems with sensors and actuators; in other words, to interface with the real world.

ECE 120: Introduction to Computing © 2016 Stee

 $\ensuremath{\mathbb C}$ 2016 Steven S. Lumetta. All rights reserved.

<section-header><text><text><text><text><text><page-footer>

slide 11

CLK Signal is Sufficient for Our FSM's Needs

© 2016 Steven S. Lumetta. All rights reserved.

However, the **CLK** signal is **sufficient for our needs**.

ECE 120: Introduction to Computing

You build with positive edge-triggered D flip-flops.

Because of the positioning of optical sensors, **T** is stable (0 for a dime, 1 for a quarter) when **CLK** rises.

Step 3: Merge Redundant States

Now we can merge redundant states.

To merge states, it suffices to

- find two states
- with identical outputs
- and identical next states.

Let's take a look.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 19

Use Human Information to Define the Representation

We need 3 bits for 5 states.

Let's **use human information** to define the representation.

Think about the sequence of coins that has been inserted into the machine.

Let's call the last coin T_0 .

And the one before that \mathbf{T}_{-1} .

And so forth.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 23

 Define the state bits as follows: S₂ is T₀, the last coin type. S₁ is 1 iff one or more quarters were inserted before the last coin (T₋₁, T₋₂, and so on) but after the last product release. S₀ is 1 iff one or more dimes were inserted before the last coin (T₋₁, T₋₂, and so on) but after the last product release. 	State Bit Definition	
 S₁ is 1 iff one or more quarters were inserted before the last coin (T₋₁, T₋₂, and so on) but after the last product release. S₀ is 1 iff one or more dimes were inserted before the last coin (T₋₁, T₋₂, and so on) but after the last product release. 	Define the state bits as follows:	
 ^o before the last coin (T₋₁, T₋₂, and so on) ^o but after the last product release. S₀ is 1 iff one or more dimes were inserted ^o before the last coin (T₋₁, T₋₂, and so on) ^o but after the last product release. 	\mathbf{S}_2 is \mathbf{T}_0 , the last coin type.	
 ^o before the last coin (T₋₁, T₋₂, and so on) ^o but after the last product release. 	\circ before the last coin (T ₋₁ , T ₋₂ , and so on)	
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. alide 24	$^{\circ}$ before the last coin (T ₋₁ , T ₋₂ , and so on)	
	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.	slide 24

For DIME , the only coin since payment is a single dime.	e the last	
So we have	DIME	000
$\mathbf{S}_2 = 0$ (the dime)	QUARTER	
$S_1 = 0$ (no quarters at all)	REJECTD	
$S_0 = 0$ (the dime is unique)	REJECTQ	
	PAID	

Calculate the State ID for QUARTER For QUARTER, the only coin since the last payment is a single quarter.				
So we have S ₂ = 1 (the quarter)	DIME QUARTER	000 100		
$S_2 = 0$ (the quarter) $S_1 = 0$ (the quarter is unique) $S_0 = 0$ (no dimes at all)	REJECTD REJECTQ PAID			
ECE 120: Introduction to Computing © 2016 Steven S. I	Lumetta. All rights reserved	L	slide :	26

For REJECTD , we have see limes but no quarters.	en two or mor	e
So we have	DIME	000
$S_2 = 0$ (the last dime)	QUARTER	100
S₁ = 0 (no quarters at all)	REJECTD	001
$S_0 = 1$ (extra dimes)	REJECTQ	
	PAID	

ECE 120: Introduction to Computing

 \mathbbm{O} 2016 Steven S. Lumetta. All rights reserved.

slide 27

Calculate the State ID for REJECTQFor REJECTQ, we have seen two or more quarters but no dimes.So we have...DIME 000S_2 = 1 (the last quarter)QUARTER 100S_1 = 1 (extra quarters)REJECTD 001S_0 = 0 (no dimes at all)REJECTQ 110PAID

What is the State ID for PAID?

For PAID , we could have gotten either coin last! Before the last coin, we got one or more				
of the other kind.	DIME	000		
For a last quarter, we have	QUARTER	100		
$S_2 = 1$ (the last quarter)	REJECTD	001		
$\mathbf{S}_1 = 0$ (no extra quarters)	REJECTQ	110		
$S_0 = 1$ (at least one dime)	PAID	101		
ECE 120: Introduction to Computing $\hfill \mathbb{O}$ 2016 Steven S.	Lumetta. All rights reserved		slide 29	

What is the State ID for But what about a last dime?	• PAID? DIME QUARTER	000	
$S_2 = 0$ (the last dime) $S_1 = 1$ (at least one quarter) $S_0 = 0$ (no extra dimes) So we have two bit patterns!	REJECTD REJECTQ PAID PAID	001 110 101 010	
ECE 120: Introduction to Computing © 2016 Steven S	. Lumetta. All rights reserved.		slide 30

That's All!

ECE 120: Introduction to Computing

You will finish the rest of the design and implement it in the lab...

© 2016 Steven S. Lumetta. All rights reserved.

slide 31