
10/21/2016

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

A Color Sequencer

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 1

Review the Six-Step Process

Recall our six-step process for FSM Design:
1. develop an abstract model
2. specify I/O behavior
3. complete the specification
4. choose a state representation
5. calculate logic expressions
6. implement with flip-flops and gates

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 2

Let’s Build a Color Sequencer

Let’s do another example.
Let’s build a color sequencer
that cycles through a set
of colors.
Imagine that we have an
LED light that can output
eight colors…
Our FSM will drive this
light using the RGB signals.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 3

RGB color
000 black
001 blue
010 green
011 cyan
100 red
101 violet
110 yellow
111 white

1. Our abstract model? A counter that goes
through five colors. Like this:

BLUE

Abstract Model for a Color Sequencer Has Five States

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 4

WHITE

CYANGREENRED

10/21/2016

Next, Define Inputs and Outputs

2. Inputs: none (it’s a
counter).
Outputs? We can just
read RGB from the table
for each state.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5

RGB color
000 black
001 blue
010 green
011 cyan
100 red
101 violet
110 yellow
111 white

Let’s add the outputs (as /RGB) to the states.

BLUE

Outputs Represent Red, Green, and Blue

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 6

WHITE

CYANGREENRED
/100

/001

/010 /011

/111

3. No inputs, so … specification is complete!

BLUE
/001

Completing the Specification

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 7

WHITE
/111

CYAN
/011

GREEN
/010

RED
/100/100

4. Outputs are again unique, so use them
as state IDs as well.

BLUE
/001

Use Unique Outputs as the Internal State IDs

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 8

WHITE
/111

CYAN
/011

GREEN
/010

RED
/100/100
RED

100/100
GREEN
010/010

CYAN
011/011

WHITE
111/111

BLUE
001/001

10/21/2016

Write a Next-State Table

5. Time for equations.
Start by writing a

next-state table.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9

S2 S1 S0
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

x x x
1 0 0

x x x

0 1 1

x x x

0 1 0
1 1 1

0 0 1

Now Use K-Maps to Express the Next-State Values

Now copy into K-maps.

= S1

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 10

S2 S1 S0
0 0 0 x x x
0 0 1 1 0 0
0 1 0 0 1 1
0 1 1 1 1 1
1 0 0 0 1 0
1 0 1 x x x
1 1 0 x x x
1 1 1 0 0 1

S1S0
00 01 11 10

S2

0

1

1x 10

0 x1x

Now Use K-Maps to Express the Next-State Values

Now copy into K-maps.
= S2’S1 + S2S1’

= S2 S1

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 11

S2 S1 S0
0 0 0 x x x
0 0 1 1 0 0
0 1 0 0 1 1
0 1 1 1 1 1
1 0 0 0 1 0
1 0 1 x x x
1 1 0 x x x
1 1 1 0 0 1

S1S0
00 01 11 10

S2

0

1

1x 10

1 x0x

Now Use K-Maps to Express the Next-State Values

Now copy into K-maps.

= S2’S0 = (S2 + S0’)’

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 12

S2 S1 S0
0 0 0 x x x
0 0 1 1 0 0
0 1 0 0 1 1
0 1 1 1 1 1
1 0 0 0 1 0
1 0 1 x x x
1 1 0 x x x
1 1 1 0 0 1

S1S0
00 01 11 10

S2

0

1

1x 01

0 x0x

10/21/2016

Implement Using Three Flip-Flops and Two Gates

6. Finally, we can
implement, as
shown to the right.

= (S2 + S0’)’
= S2 S1

= S1

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 13

D
S0

Q

Q

RD
S2

Q

Q

D
S1

Q

Q

G

B

Ready to Build It?

Are you excited?
Imagine that you go get your protoboard out.
You go to the lab.
You build the color sequencer.
You hook it to the LED light.
You turn it on.
…
It stays black.

Seem familiar?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 14

Behavior Seems to Be Inconsistent

You debug for a while.
You play with wires.
You look at datasheets.
Everything seems right.
Sometimes it works.
Sometimes it flashes yellow or violet, then works.
Sometimes it stays black.

What’s going on?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 15

Our Don’t Cares Become 0s for S2

What happened to the “don’t care” states?
Let’s take a look.
We can use our
K-maps or our
equations.
For S2, the x’s
became 0s.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 16

S1S0
00 01 11 10

S2

0 x 1 1 0

1 0 x 0 x

000 → 0??
101 → 0??
110 → 0??

10/21/2016

One x Becomes a 1 for S1

For S1, the x for
state 101 became
a 1, and the others
became 0s.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 17

S1S0
00 01 11 10

S2

0 x 0 1 1

1 1 x 0 x

000 → 00?
101 → 01?
110 → 00?

One x Becomes a 1 for S0

For S0, the x for
state 110 became
a 1, and the others
became 0s.

So what comes
after 000 (black)?

Black again!

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 18

000 → 000
101 → 010
110 → 001

S1S0
00 01 11 10

S2

0 x 0 1 1

1 0 x 1 x

We can add these states to our diagram.

Full Transition Diagram Illustrates Buggy Behavior

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 19

BLUE
/001

WHITE
/111

CYAN
/011

GREEN
/010

RED
/100/100
RED

100/100
GREEN
010/010

CYAN
011/011

WHITE
111/111

BLUE
001/001

YELLOW
110/110

VIOLET
101/101

BLACK
000/000

Avoid Bad States by Initializing the Counter State

What can we do? Let’s add a way to initialize.
We can…
◦choose a specific (hardwired) initial
state at power-on (one from our loop*),

◦use muxes to enable ourselves to set the
state arbitrarily at any time,

◦ or use one signal to force the system into the
loop, such as = (S1’INIT’)’ (active low).

*Forcing all flip-flops to 0 doesn’t help!

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 20

10/21/2016

One Can Always Backtrack in the Design Process

Alternatively,
◦we can go back to our K-maps and add loops.
◦We may need to iterate a couple of times to
find a design that always works.

We could also just choose specific next states
for the states outside of our loop.
These approaches require more logic.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 21

