

Review of General Bit-Slice Model

General model parameters

 N-bit operandsP bits of input from operands Q bits of output produced
\mathbf{M} bits between bit slices
R bits of final output (not
shown; produced by output
logic operating on M bits from last bit slice).

ECE 120: Introduction to Computing
O 2016 Steven S. Lumetta. All rights reserved.

Parameter Values for a Power-of-2 Checker
Power-of-2 checker parameters
N-bit operands
$\mathrm{P}=2$
$\mathrm{Q}=0$
$\mathrm{M}=2$
R $=1$

ECE 120: Introduction to Computing
$\bigcirc 2016$ Steven S. Lumetta. All rights reserved.

Initialization of a Power-of-2 Checker
Our power-of-2 checker bit slice uses the representation shown here to pass
information between slices.
What values
should be passed to the first bit slice?

C_{1}	C_{0}	meaning
0	0	no 1 bits
0	1	one 1 bit
1	0	not used
1	1	>one 1 bit

so $\mathrm{C}_{1}=00$ so $\mathrm{C}_{1} \mathrm{C}_{0}=00$

ECE 120: Introduction to Computing
$\bigcirc 2016$ Steven S. Lumetta. All rights reserved.

Example: A Power-of-2 Checker

ECE 120: Introduction to Computing
-2016 Steven S. Lumetta. All rights reserved.

Discrete Time Implies Delayed Results: $\mathrm{N}=8$

A Power-of-2 Checker Consists of Four Parts

Let's analyze the area of a power-of-2 checker.
We have:

- one bit slice,
three 2-input gates and two 3-input gates
two 2 ilops
- two 2-input NOR gates (selection logic)
- and a 2 -input XOR

16 2-input gates and four inverters
Total: $3+16+2=212$-input gates,
$2=23$-input gates
$4=4$ inverters, and 1 2-input XOR.

ECE 120: Introduction to Computing
2016 Steven S. Lumetta. All rights reserved

To handle N-bit operands (2 bits per bit slice), a bit-sliced design requires
-3N/2 2-input gates (6 N transistors),

- N 3-input gates (6N transistors), and
- 1 2-input XOR.

A serial design (independent of N) requires

- 21 2-input gates (84 transistors),
- 2 3-input gates (12 transistors),
-4 inverters (8 transistors), and
- 1 2-input XOR.

The serial design is smaller for $\mathrm{N} \geq 10$.

ECE 120: Introduction to Computing
02016 Steven S. Lumetta. All rights reserved.
side 10

When Are Inputs Available?

A rising edge arrives at $t=0$ (gate delays).

Delay Analysis for the Bit Slice

And delay?
2 on all paths.

[^0]

Serial Design is At Least 5.5x Slower

To handle N-bit operands, a bit-sliced design requires $\mathbf{N}+1$ gate delays.
For a serial design,

- the clock cycle must be
at least 11 gate delays, and
- we must execute for N/2 cycles, so
- N-bit operands require
at least $11 \mathrm{~N} / 2$ gate delays.
The serial design is at least $\sim 5.5 \mathrm{x}$ slower.
(And may be even slower!)

[^0]: ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved

