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Review of General Bit-Slice Model

General model parameters
N-bit operands
P bits of input from operands
Q bits of output produced
M bits between bit slices
R bits of final output (not
shown; produced by output 
logic operating on M bits from last bit slice).
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Parameter Values for a Serial Comparator

Comparator parameters
N-bit operands
P = 2
Q = 0
M = 2
R = 2
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Initialization of a Serial Comparator

Our comparator bit slice uses the 
representation shown here to pass 
information between slices.
What values should be
passed to the first bit
slice?
A = B, so C1C0 = 00
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C1 C0 meaning
0 0 A = B
0 1 A < B
1 0 A > B
1 1 not used
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Example: A Serial Comparator
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initialized to 0
when F = 1

output logic
does nothing

(R = 2)

two flip-flops
(since M = 2)

0 output flip-flops
(since Q = 0)

input operands
(P = 2)

Discrete Time Implies Delayed Results: N = 4
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(green = bit 
slice labels)

cycle # F A B B1 B0 C1 C0 Z1 Z0

0 1 0 1
1
2
3
4

bits bits 0 0 0 1
0 1 0 1 0 10 1 1
0 1 0 1 1 00 1 0
1 0 1 0 0 10 0 1
0 1 0 ? ? ?x x x

yellow = inputs

blue = outputs

A Serial Comparator Consists of Three Parts

Let’s analyze the area of a serial comparator.
We have:
◦ one bit slice,
◦ two flip-flops, and
◦ two 2-input NOR 
gates (selection logic).
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A Serial Comparator Contains One Bit Slice

Assume the smaller version of the bit slice.  
So we need six 2-input NAND gates and 
two inverters.
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six 2-input NAND
and two inverters

A Serial Comparator Uses Two Flip-Flops

A flip-flop is two latches and an inverter.
If we use NOR gates for the first latch, 
we don’t need the extra inverter.*
So eight
2-input
gates and
two 
inverters
(each).

*And real designs, optimized at the 
transistor level, are even smaller.
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A Serial Comparator Consists of Three Parts

Let’s analyze the area of a serial comparator.
We have:
◦ one bit slice,
◦ two flip-flops, and
◦ two 2-input NOR 
gates (selection logic).

Total: 6+16+2 = 24 2-input gates and
2+4 = 6 inverters.
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six 2-input NAND
and two inverters

16 2-input gates
and four inverters

Serial Design is Smaller for N ≥ 4

To handle N-bit operands, 
a bit-sliced design requires:
◦6N 2-input gates, and
◦2N inverters.

A serial design (independent of N) requires
◦24 2-input gates, and
◦6 inverters.
The serial design is smaller for N ≥ 4.
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Serial Designs are Slower than Bit-Sliced Designs

The tradeoff?  Serial designs are 
slower than bit-sliced designs.

Why?
There are three reasons:
1. All paths matter.
2. Selection logic and flip-flops add to delay.
3. Other logic may further reduce the speed 

of the common clock.
Let’s look at each in more detail.
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All Paths Matter in a Serial Design

In an N-bit bit-sliced design,
◦ All external inputs appear at time 0,
◦ So only the slice-to-slice paths in the bit slice 
contribute to the multiplier on N.

◦ Other paths contribute only constant time 
to the overall delay in the design.

In a serial design, all paths matter.
◦ All input bits arrive in the cycle 

in which they are consumed, so
◦ long paths from any input
can slow down the design overall.
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Flip-Flops and Selection Logic Add to Delay

Flip-flops take time
◦To store values,
◦To produce values.

And the selection logic sits between the 
flip-flops and the bit-slice inputs.
The clock cycle 
◦must be long enough 
◦ to account for all of these delays.
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Clock Speed is Determined by the Slowest Logic

The longest path through combinational logic 
determines the speed of the common clock.
In practice,
◦ engineers identify complex and/or important 

elements and 
◦ work hard to make them fast or 
◦ to split them into several cycles.

Even if a serial design’s logic needs only 
0.1 clock cycles, operating on N-bit operands 
still takes N clock cycles.
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Assume Four Gate Delays On Either Side of Clock Edge

Let’s analyze the delay of a serial comparator.
We can count gate delays
◦ in the bit slice, and
◦ for the selection logic.
What about the flip-flops?
Let’s assume
◦ four gate delays of stable D input 
needed before the rising edge, and

◦ four gate delays after the rising edge.
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When Are Inputs Available?

A rising edge arrives at t = 0 (gate delays).
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available
at t = 4

also available
at t = 4

available
at t = 5

Delay Analysis for the Bit Slice

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 19

A to Z1:
C1 to Z1:
B to Z1:

3 gate delays (ignoring NOT)
2 gate delays
3 gate delays

Paid 4 gate delays 
for flip-flops.

When Are Results Stored?

A rising edge arrives at t = 0 (gate delays).
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available
at t = 4

also available
at t = 4

available at t = 7

available
at t = 5

stored
at t = 11
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Serial Design is At Least 5.5x Slower

To handle N-bit operands, a bit-sliced design 
requires 2N + 1 gate delays.
For a serial design,
◦ the clock cycle must be

at least 11 gate delays, and
◦ we must execute for N cycles, so
◦ N-bit operands require 
at least 11N gate delays.

The serial design is at least 5.5x slower.
(And may be even slower!)
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Bit-Sliced and Serial Designs are Extrema

Both designs are simple.
Serial designs are relatively small, but slow.
Bit-sliced designs are fast, but large.
But we can build anything in between:
◦2 bit slices per cycle,
◦3 bit slices per cycle,
◦and so forth.

And/or optimize more than one bit slice
(increase complexity).
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An Example of Partial Serialization in Practice

In one generation of Intel processors,
◦ the designers included 16-bit adders
◦ clocked at twice the main clock speed
(6 GHz instead of 3 GHz).

These adders could be used to …
◦perform a single 32-bit add
(two cycles at 6 GHz), or

◦perform two 16-bit adds
for multimedia codes.
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