

Initialization of a Serial Comparator Our comparator bit slice uses the representation shown here to pass information between slices.				
What values should be passed to the first bit slice?	C_1	\mathbf{C}_{0}	meaning	
	0	0	A = B	
$A = B$, so $C_1 C_0 = 00$	0	1	A < B	
	1	0	A > B	
	1	1	not used	
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.				

A Serial Comparator Consists of Three Parts

© 2016 Steven S. Lumetta. All rights reserved.

slide 7

Let's analyze the area of a serial comparator.

We have:

• one bit slice,

ECE 120: Introduction to Computing

- two flip-flops, and
- two 2-input NOR
- gates (selection logic).

Flip-flops take time

- To store values,
- To produce values.

And the selection logic sits between the flip-flops and the bit-slice inputs.

The clock cycle

ECE 120: Introduction to Computing

- must be long enough
- to account for all of these delays.

© 2016 Steven S. Lumetta. All rights reserved.

slide 15

slide 23

An Example of Partial Serialization in Practice

In one generation of Intel processors,
the designers included 16-bit adders
clocked at twice the main clock speed (6 GHz instead of 3 GHz).
These adders could be used to ...
perform a single 32-bit add (two cycles at 6 GHz), or
perform two 16-bit adds for multimedia codes.