Checking for Upper-Case Characters

Task: Checking for an Upper-Case Letter

Let's design logic to check whether an ASCII character is an upper-case letter.

In ASCII, 'A' is \texttt{1000001} (0x41), and 'Z' is \texttt{1011010} (0x5A).

Let's say that the ASCII character is in \(C = C_6 C_5 C_4 C_3 C_2 C_1 C_0 \).

How can we check whether \(C \) represents an upper-case letter?

We Will Need a BIG Truth Table!

<table>
<thead>
<tr>
<th>Should we write a truth table for (U(C))?</th>
<th>(C_6)</th>
<th>(C_5)</th>
<th>(C_4)</th>
<th>(C_3)</th>
<th>(C_2)</th>
<th>(C_1)</th>
<th>(C_0)</th>
<th>(U(C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0 0 0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0 0 0 0 0 1 0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0 0 0 0 1 0 0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0 0 0 1 0 0 0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0 0 1 0 0 0 0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0 1 0 0 0 0 0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1 0 0 0 0 0 0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Let's Break the Truth Table into Eight Pieces

Can we break the truth table into pieces?

For example, let's break the truth table
- into eight truth tables
- of 16 rows each.

Each piece represents one value of \(C_6 C_5 C_4 \).

We can solve each piece with a K-map on \(C_3 C_2 C_1 C_0 \).
Some Functions are Quite Simple

Or maybe we don’t need a K-map for some.
Remember that 'A' is 1000001 (0x41), and 'Z' is 1011010 (0x5A).
Think about the table for $C_6C_5C_4 = 000$?*
What is the function of $C_6C_3C_2C_1C_0 = 0$ (In other words, no ASCII character with $C_6C_5C_4 = 000$ is an upper-case letter.)

* This notation means $C_6 = 0$ AND $C_5 = 0$ AND $C_4 = 0$.

Only Two of Our Functions are Not the 0 Function

For reference: 'A' is 1000001 (0x41), and 'Z' is 1011010 (0x5A).
Which of our eight functions are not the 0 function?
$C_6C_3C_2C_1C_0 = 100$ Let’s call the function T_4.
$C_6C_3C_2C_1C_0 = 101$ Let’s call the function T_5.
Let’s solve K-maps for these two.

Solve T_4 Using a Single Loop

Let’s solve T_4. Should we use SOP or POS?
T_4 is a maxterm!
$T_4 = (C_3 + C_2 + C_1 + C_0)$

Solve T_5 as a POS Expression

Let’s solve T_5. POS is better again.
What are the loops?
$(C_3' + C_2)$
$(C_3' + C_1' + C_0)$
So $T_5 = (C_3' + C_2') \cdot (C_3' + C_1' + C_0')$
Combine T_4 and T_5 to find $U(C)$

How do we combine T_4 and T_5 to find the full upper-case checker function $U(C)$?

Remember:

- T_4 applies when $C_6 C_5 C_4 = 100$, and
- T_5 applies when $C_6 C_5 C_4 = 101$.

So …?

- AND T_4 with $C_6 C_5 C_4$,
- AND T_5 with $C_6 C_5 C_4$, and
- OR the results together.

A Good Solution, But Maybe We Can Do Less Work?

So $U(C) = C_6 C_5 C_4' (C_3' + C_2' + C_1' + C_0) + C_6 C_5 C_4 (C_3' + C_2')(C_3' + C_1' + C_0')$

That’s a pretty small and fast solution.
But we still had to do a fair bit of work.

Is there an easier way?
Consider the following: to check for an upper-case letter, we need to know whether

$C \geq 1000001 \ AND \ C \leq 1011010$

Use Two Comparators to Calculate $U(C)$

What about this approach?

Or Use Two Adders to Calculate $U(C)$

Or this approach?

Note that the adders are performing subtractions.
Inefficient, But Simple to Design

Quite large and slow compared with our first solution?

Consider two arguments:

1. CAD tools can optimize away much of the extra overhead.

2. Software executing on data center servers around the world executes the adder design even less efficiently, but it’s constantly in use on hundreds of thousands of machines.