
9/26/2016

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Building with Abstraction
and a First Example

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 1

Optimization at the Level of Gates is Always Possible

One can always solve a problem by
◦developing complete Boolean expressions,
◦ solving for “good” forms with K-maps
(or algebra, with more variables),

◦ implementing the resulting equations,
◦ tuning logic to reduce gate sizes (number of
inputs) and fanout (the number of gates
using a single gate’s output).

You can now perform such a process.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 2

But Optimization at Gate Level is Rarely Needed

Such detail is rarely needed for a satisfactory
solution.
Instead, humans can
◦ use abstraction and build with components such

as adders and comparators, or
◦ use extra levels of logic to describe functions

more intuitively.
Computer-aided design (CAD) tools
◦ can help with low-level optimizations.
◦ In many cases, CAD tools can do better than

humans because they explore more options.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 3

Tradeoffs are Always Made in Some Context

Context is important!
If a mechanical engineer produces a 0.5%
boost in efficiency for internal combustion
engines sized for automobiles, that engineer
will probably win a major prize.
In our field, engineers spend a lot of time
◦ improving the designs of arithmetic units
and memory, and

◦ improving CAD tools’ ability to optimize.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 4

9/26/2016

But Optimization at Gate Level is Rarely Needed

“Premature optimization is the root of all evil.”
– Sir C.A.R. “Tony” Hoare

Don’t spend time optimizing
◦ something that is likely to change, nor
◦ something that does not contribute much

to the overall system goodness (any metric).
The flip side:
◦ don’t ignore scaling issues

when choosing algorithms, and
◦ don’t design in a way that

prohibits/inhibits optimization.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5

First Example: Subtraction

Let’s start with something simple.
Let’s build a subtractor.
How do we subtract as humans?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 6

Example: Subtraction of 5-Digit Numbers

Let’s do an example with 5-digit numbers

12345
- 871

ECE 120: Introduction to Computing slide 7© 2016 Steven S. Lumetta. All rights reserved.

Negate by finding
the “9’s complement”

and adding 1.

Example: Subtraction of 5-Digit Numbers

Let’s do an example with 5-digit numbers

12345
+ 99129

Good, we got the right answer
(12345 – 871 = 11474)!

ECE 120: Introduction to Computing slide 8

74

1

1

© 2016 Steven S. Lumetta. All rights reserved.

1

4

1

1

We have no
space for

that digit!

9/26/2016

Use an Adder to Implement a Subtractor

Ok, maybe your elementary school
taught subtraction a different way.
But you probably did use that approach in
your ECE120 homework to subtract unsigned
and 2’s complement values.

A – B = A + (NOT B) + 1
(where “NOT” applies to all bits of B)

Instead of mimicking the human subtraction
process, let’s use an adder to implement a
subtractor…

ECE 120: Introduction to Computing slide 9© 2016 Steven S. Lumetta. All rights reserved.

Use an Adder to Implement a Subtractor

Take a look at the
design to the right.
The core is an
N-bit adder.
We want to calculate
the difference
D = A – B.
We modify the inputs
slightly to perform
the subtraction.

ECE 120: Introduction to Computing slide 10© 2016 Steven S. Lumetta. All rights reserved.

Convert B to its 1’s Complement

The input A is
unchanged.
The input B is
transformed to its
1’s complement.
How do we
implement
1’s complement?

N inverters!

ECE 120: Introduction to Computing slide 11© 2016 Steven S. Lumetta. All rights reserved.

With Cin = 1, the Adder Produces A - B

Finally, the Cin input
is set to 1.
So what does the
adder calculate?

A + (NOT B) + 1
which is A – B,
as desired.

ECE 120: Introduction to Computing slide 12© 2016 Steven S. Lumetta. All rights reserved.

9/26/2016

Calculate D to Understand the Carry Out Signal

What does the carry
out Cout mean?
Remember that the
1’s complement
is (2N – 1) – B.
So we obtain D
= A + (2N – 1) – B + 1
= A – B + 2N

ECE 120: Introduction to Computing slide 13© 2016 Steven S. Lumetta. All rights reserved.

Carry Out Signal (Opposite Sense) Still Means Overflow

So D = A – B + 2N.
But Cout is the 2N

term from the adder.
Thus
◦Cout = 1 means A ≥ B
◦Cout = 0 means A < B

So for unsigned
subtraction Cout = 0
indicates overflow!

ECE 120: Introduction to Computing slide 14© 2016 Steven S. Lumetta. All rights reserved.

Carry Out Signal (Opposite Sense) Still Means Overflow

What if we want a device that does both
addition and subtraction?
We need a way to choose the operation.
Add a control signal S
◦ S = 0: addition
◦ S = 1: subtraction

And the modify the adder inputs with S
◦ A …
◦ B …
◦ Cin …

ECE 120: Introduction to Computing slide 15© 2016 Steven S. Lumetta. All rights reserved.

unmodified
B XOR S (bitwise)
S

