

But Optimization at Gate Level is Rarely Needed

Such detail is rarely needed for a satisfactory solution. Instead, humans can • use abstraction and build with components such as adders and comparators, or • use extra levels of logic to describe functions more intuitively. Computer-aided design (CAD) tools

• can help with low-level optimizations.

ECE 120: Introduction to Computing

• In many cases, CAD tools can do better than humans because they explore more options.

© 2016 Steven S. Lumetta. All rights reserved.

slide 3

Tradeoffs are Always Made in Some Context

Context is important!

If a mechanical engineer produces a 0.5% boost in efficiency for internal combustion engines sized for automobiles, that engineer will probably win a major prize.

- In our field, engineers spend a lot of time • improving the designs of arithmetic units and memory, and
- improving CAD tools' ability to optimize.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 4

С	arry Out Signal (O	pposite Sense) Sti	ll Means Overflo	W
W ac	hat if we want a devic ldition and subtraction	e that does both n?		
W	e need a way to choose	e the operation.		
A °				
A: • •	And the modify the adder inputs with $S \circ A \dots$ unmodified $\circ B \dots B XOR S$ (bitwise) $\circ C_{in} \dots S$			
ECF	120: Introduction to Computing	© 2016 Steven S. Lumetta. All rights reserved.		slide 15