

What Extra Information Do We Need?	
Why not just one? An answer only needs 1 bit!	
Say that we pass bits from right to left.	
If the bits $\mathbf{a}_{N-2}\mathbf{a}_1\mathbf{a}_0$ represent a power of two, is $\mathbf{a}_{N-1}\mathbf{a}_{N-2}\mathbf{a}_1\mathbf{a}_0$ be a power of two?	
What if $\mathbf{a}_{N-2}\mathbf{a}_1\mathbf{a}_0$ does not represent a power of two?Iff $\mathbf{a}_{N-1} = 0$.	
In that case, we can't tell whether $a_{N-1}a_{N-2}a_1a_0$ is a power of two or not!	
What else do we need to know?	
ECE 120: Introduction to Computing © 2016-2017 Steven S. Lumetta. All rights reserved.	slide 4

slide 7

© 2016 Steven S. Lumetta. All rights reserved.

ECE 120: Introduction to Computing

Let's build a slice that operates on two bits of A .	
In the bit slice, we call them A and B .	
Inputs from the previous bit slice are C_1 and C_0 .	
Outputs to the next bit slice are \mathbf{Z}_1 and \mathbf{Z}_0 .	
Direction of our operation doesn't matter. Either will do.	
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.	slide 8

We Need a Representation for Answers

Let'	s fi	ll in	a tr	uth table.					
We'	ll s	tart	witl	n the case o	of A	= 0	and B = 0 .		
Α	В	\mathbf{C}_1	\mathbf{C}_{0}	meaning	\mathbf{Z}_1	\mathbf{Z}_{0}	meaning		
0	0	0	0	no 1s	0	0	no 1s		
0	0	0	1	one 1	0	1	one 1		
0	0	1	0	???	x	\mathbf{x}	don't care		
0	0	1	1	>one 1	1	1	>one 1		

	One 1 Input Increments the Count of 1 Bits Now consider A = 0 and B = 1.											
A	ł	в	C ₁	C ₀	meaning	$ \mathbf{Z}_1 $	\mathbf{Z}_{0}	meaning				
C)	1	0	0	no 1s	0	1	one 1				
()	1	0	1	one 1	1	1	>one 1				
()	1	1	0	???	x	x	don't care				
()	1	1	1	>one 1	1	1	>one 1				
ECE 12	20: Ir	ntroduc	ction to Co	omputing	© 2)16 Steven S	5. Lumetta	a. All rights reserved.		slide 10		

One 1 Input Increments the Count of 1 Bits												
The	cas	se fo	or A	= 1 and	B÷	= 0 i	s th	e same.				
А	B	C.	C	meani	ng	Ζ.	Za	meanii	ng			
								one				
1	0	0	1	one	1	1	1	>one	1			
1	0	1	0	???		x	x	don't ca	are			
1	0	1	1	>one	1	1	1	>one	1			
ECE 120:	Introdu	ction to C	omputing		© 2016	Steven S	. Lumetta.	All rights reserved	L			slide 11

Two 1s in the Number Rules Out Powers of Two										
Finally, consider $\mathbf{A} = 1$ and $\mathbf{B} = 1$.										
Α	В	\mathbf{C}_1	C ₀	meaning	Z_1	\mathbf{Z}_{0}	meaning			
1	1	0	0	no 1s	1	1	>one 1			
1	1	0	1	one 1	1	1	>one 1			
1	1	1	0	???	x	x	don't care			
1	1	1	1	>one 1	1	1	>one 1			
					-					
		ction to Co					. All rights reserved.		slide 12	

Need One More Gate Delay to (Get the Answer
-------------------------------	----------------

But we don't get an answer! Our N-bit checker, • composed of N/2 bit slices, • produces only a "count" of 1 bits (0, 1, or "many"). We want yes (P = 1) or no (P = 0)! Looking at the representation, the fastest solution is to add an XOR gate at the end. P = $Z_1 \oplus Z_0$ from the last bit slice. So delay is actually N + 1 gate delays. Meters 2018 States 4 and 2 and 2