University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering
ECE 120: Introduction to Computing

A Power-of-Two Checker

ECE 120: Introduction to Computing
© 2016-2017 Steven S. Lumetta. All rights reserved.

Powers of Two are Easy to Spot in Binary

Let's do another bit-sliced design.
Can we check whether an unsigned number represents a power of two?
What does a power of two look like in bits?
For 5 -bit unsigned, the powers of 2 are...
00001, 00010, 00100, 01000, 10000
A power of two has exactly one 1 bit
(with place value 2^{N} for some N , of course!).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.
side 2

What Extra Information Do We Need?

Why not just one? An answer only needs 1 bit! Say that we pass bits from right to left.
If the bits $a_{N-2} \ldots a_{1} a_{0}$ represent a power of two,
is $\mathbf{a}_{\mathrm{N}-1} \mathbf{a}_{\mathrm{N}-2} \ldots \mathbf{a}_{1} a_{0}$ be a power of two?
What if $\mathbf{a}_{\mathrm{N}-2} \ldots \mathrm{a}_{1} a_{0}$ does not Iff $\mathbf{a}_{\mathrm{N}-1}=0$. represent a power of two?
In that case, we can't tell whether
$a_{N-1} a_{N-2} \ldots a_{1} a_{0}$ is a power of two or not!
What else do we need to know?

ECE 120: Introduction to Computing
© 2016 -2017 Steven S. Lumetta. All rights reserved.

For Inductive Step, We Must Know Whether all Bits are 0
Imagine that we have completed $\mathrm{N}-1$ bits.
Under what conditions can number A be a power of two?

1. $\mathbf{a}_{\mathrm{N}-1}=1$ and the rest is all 0 s , or
2. $\mathbf{a}_{\mathrm{N}-1}=0$ and the rest is a power of two.

For \#2, we need to know whether the rest of the bits form a power of two.
But for \#1, we also need to know whether the rest of the bits are all 0 .

ECE 120: Introduction to Computing
02016 Steven S. Lumetta. All rights reserved
5

There are Three Possible Messages between Bit Slices

The "yes" cases for \#1 and \#2 do not overlap: all 0 bits is not a power of two.
The "no" cases need not be further separated:

- all 0s means no 1 bits
- a power of two means one 1 bit
- more than one 1 bit means
"no" to both questions
That's all we need to know. Three possible messages between slices, so two bits.

We Need a Representation for Answers

I'll use the following representation.
Others may be
better.

O2016 Steven S. Lumetta. All rights reserved

We Need a Representation for Answers

Let's build a slice that
operates on two bits of A.
In the bit slice, we call them A and B.
Inputs from the previous bit slice
are \mathbf{C}_{1} and \mathbf{C}_{0}.
Outputs to the next bit slice
are \mathbf{Z}_{1} and \mathbf{Z}_{0}.
Direction of our operation doesn't matter.
Either will do.

Two Zeroes Do Not Change the Result

Let's fill in a truth table.
We'll start with the case of $\mathbf{A}=0$ and $\mathrm{B}=0$.

A	B	C_{1}	C_{0}	meaning	Z_{1}	Z_{0}	meaning
0	0	0	0	no 1s	0	0	no 1s
0	0	0	1	one 1	0	1	one 1
0	0	1	0	$? ? ?$	X	x	don't care
0	0	1	1	>one 1	1	1	>one 1

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

One 1 Input Increments the Count of 1 Bits
Now consider $\mathrm{A}=0$ and $\mathrm{B}=1$.

| A B | \mathbf{C}_{1} | \mathbf{C}_{0} | meaning | Z_{1} | Z_{0} | meaning |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

0100 no 1s $0 \quad 1$ one 1
010110 one $1 \quad 1 \quad 1$ >one 1
$\begin{array}{lllll}0 & 1 & 1 & 0 & ? ? ?\end{array} \quad \mathbf{x} \quad \mathbf{x}$ don't care
01111 >one 1111 >one 1

ECE 120: Introduction to Computing \quad-2016 Steven S. Lumeta. All rights reserved.
side 10

One 1 Input Increments the Count of 1 Bits

The case for $\mathbf{A}=1$ and $\mathrm{B}=0$ is the same.

$$
\begin{array}{ccccc|cccc}
\text { A } & \mathrm{B} & \mathrm{C}_{1} & \mathrm{C}_{0} & \text { meaning } & \mathrm{Z}_{1} & \mathrm{Z}_{0} & \text { meaning } \\
\hline 1 & 0 & 0 & 0 & \text { no 1s } & 0 & 1 & \text { one } 1 \\
1 & 0 & 0 & 1 & \text { one } 1 & 1 & 1 & \text { >one } 1 \\
1 & 0 & 1 & 0 & \text { ??? } & \mathrm{x} & \mathrm{x} & \text { don't care } \\
1 & 0 & 1 & 1 & \text { >one } 1 & 1 & 1 & \text { >one } 1
\end{array}
$$

Two 1s in the Number Rules Out Powers of Two
Finally, consider $\mathrm{A}=1$ and $\mathrm{B}=1$.

| A B | \mathbf{C}_{1} | \mathbf{C}_{0} | meaning | Z_{1} | Z_{0} | meaning |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | $\mathbf{1}$ | 0 | 0 | | | |

11000 no 1s 1
1101 one 111
$\begin{array}{lllll}1 & 1 & 1 & 0 & ? ? ?\end{array} \quad x \quad x$ don't care
$\begin{array}{lllllllll}1 & 1 & 1 & 1 & \text { >one } 1 & 1 & 1\end{array}$

We Solve Z_{1} as a POS Expression

Let's use a K-map to solve \mathbf{Z}_{1}. POS looks good.
What are the loops?
$\left(C_{1}+A+B\right)$

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved
slide 13
We Solve Z_{0} as an SOP Expression
Now let's solve \mathbf{Z}_{0}. SOP and POS are the same.

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
slide 14

We Can Reuse Some Factors with Algebra

Notice that we can reuse factors
from Z_{1} to calculate Z_{0} :
$\mathrm{Z}_{1}=\left(\mathrm{C}_{1}+\mathrm{A}+\mathrm{B}\right)\left(\mathrm{C}_{0}+\mathrm{A}\right)\left(\mathrm{C}_{0}+\mathrm{B}\right)$
$Z_{0}=\left(C_{0}+A+B\right)=\left(C_{0}+A\right)+\left(C_{0}+B\right)$

Let's draw the bit slice, then analyze its area and delay.

Area is 6 N , and Delay is N Gate Delays for N Bits
Here is an implementation of the bit
slice using NAND and NOR. Let's find area.
How many literals? 7
How many operations? 5 (4 NOR, 1 NAND)
And delay?
2 on all paths.
So N gate delays
for N bits.

ECE 120: Introduction to Computing

- 2016 Steven S. Lumetta. All rights reserved.

Need One More Gate Delay to Get the Answer
But we don't get an answer!
Our N-bit checker,

- composed of N/2 bit slices,
- produces only a "count" of 1 bits
(0,1 , or "many").
We want yes $(P=1)$ or no $(P=0)$!
Looking at the representation, the fastest solution is to add an XOR gate at the end.
$\mathbf{P}=\mathbf{Z}_{1} \oplus \mathbf{Z}_{0}$ from the last bit slice.
So delay is actually $\mathbf{N}+1$ gate delays.

ECE 120: Introduction to Computing
2016 Steven S. Lumetta. All rights reserved

