

slide 8

A More Detailed Version of Our Calculations

Grey is "not relevant," and green is maximum (time at which \mathbf{Z}_i is available).

			- 1	$-\mathbf{v}_0$
input available at	0	0	-∞	-∞
delay from input to \mathbf{Z}_1	+2	+2	+2	
\mathbf{Z}_1 not available until	2	2	-∞	
delay from input to Z_0	+2	+2		+2
Z_0 not available until	2	2		- <i>x</i> 0-

1	A More Detailed Version of Our Calculations						Generalize the Result to an N-Bit Comparator
(Grey is "not relevant," ar time at which Z _i is avail	nd gre able)	een is	maxii	mum		C_1^0 and C_0^0 are available at time 2 (2 gate delays).*
	(bit slice 1)	Α	В	C ₁	C ₀		C_1 and C_0 are available at time 4.
	input available at	0	0	2	2		When are C_1^{N-1} and C_0^{N-1} available (these are the answer for an N bit comparator) ²
	delay from input to \mathbf{Z}_1	+2	+2	+2			are the answer for an N-Di t comparator):
	\mathbf{Z}_1 not available until	2	2	4			N-bit answer is available at time 2N.
	delay from input to \mathbf{Z}_0	+2	+2		+2		*In the notes, the inverters are counted, so paths from A and B
	Z_0 not available until	2	2		4		are slightly longer, and all timings are increased by 1.
Е	CE 120: Introduction to Computing © 2)16 Steven S.	Lumetta. All	rights reserve	d.	slide 9	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

slide 11

We May be Able to Improve Our Comparator Design

Can we do better?

(You should ask: better in what sense?)

Can we reduce delay?

- **Unlikely** with a bit-sliced design.
- Not easy to implement most functions with one gate.

Can we reduce area?

• Maybe ...

ECE 120: Introduction to Computing

• Let's do some algebra.

© 2016 Steven S. Lumetta. All rights reserved.

Use Algebra to Find Common Subexpressions (A'B, AB')

Start with $\mathbf{Z}_1 = \mathbf{AB'} + \mathbf{AC}_1 + \mathbf{B'C}_1$ then use distributivity to pull out **C**₁: $Z_1 = AB' + (A + B')C_1$ and rewrite the (A + B') factor as a NAND: $Z_1 = AB' + (A'B)'C_1$ Similarly, $Z_0 = A'B + (AB')'C_0$ Notice that we now reuse **AB'** and **A'B**.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 12

slide 10

slide 14

Ci

\mathbf{L}_{i} is avair	lable).					
(bit slice 0)	Α	B	C ₁	C ₀		
input available at	0	0	- x	-∞		
delay from input to ${ m Z}_1$	+3	+3	+2			
\mathbf{Z}_1 not available until	3	3	-∞			
delay from input to Z_0	+3	+3		+2		
Z_0 not available until	3	3				

A More Detailed Version of Our Calculation

A More Detailed Version of Our Calculations

Grey is "not relevant," and green is maximum (time at which \mathbf{Z}_i is available).

	(bit slice 1)	Α	B	C ₁	C ₀		
	input available at	0	0	3	3		
	delay from input to \mathbf{Z}_1	+3	+3	+2			
	\mathbf{Z}_1 not available until	3	3	5			
	delay from input to \mathbf{Z}_0	+3	+3		+2		
	\mathbf{Z}_0 not available until	3	3		5		
ECE	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 18						

The Slice-to-Slice Paths are the Important Ones

 C_1^0 and C_0^0 are available at time 3 (2 gate delays).*

 C_1^1 and C_0^1 are available at time 5.

When are C_1^{N-1} and C_0^{N-1} available (these are the answer for an N-bit comparator)?

N-bit answer is available at time 2N+1.

*In the notes, the inverters are counted, so paths from A and B are slightly longer, and all timings are increased by 1.

ECE 120: Introduction to Computing © 2016 S

 $\ensuremath{\mathbb C}$ 2016 Steven S. Lumetta. All rights reserved.

slide 19

Overall: Much Better Area for Slightly More Delay So the new design • reduces area by about 40% (area 12N compared to area 20N). • increases delay by 1 (2N+1 gate delays compared to 2N gate delays).

ECE 120: Introduction to Computing

 $\ensuremath{\mathbb C}$ 2016 Steven S. Lumetta. All rights reserved.

slide 20

Can We Do Even Better?	
Yes, but it's not as easy.	
For example, we can design a slice • that compares multiple bits of A and B . • See Notes 2.4.6 for an example.	
We can also solve the full N-bit problem.	
In other words, trade more human work and complexity for better area and delay .	
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.	slide 21