University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering
ECE 120: Introduction to Computing

Bit-Sliced Comparator

How Do You Compare Unsigned Numbers?

Let's develop a bit-sliced design to compare two unsigned numbers.

Which 8-bit unsigned number is bigger?

$$
\begin{array}{llllllll}
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}
$$

How did you know?
Did you start on the left or the right?

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.

Our Design Compares from Right to Left

Our comparator design will start on the right.

$$
\xrightarrow[\substack{\text { humans compare this way } \\ a_{7} a_{6} a_{5} a_{4} a_{3} a_{2} a_{1} a_{0}}]{\substack{b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{6}}} \text { our design will compare this way }
$$

From least significant to most significant bit.

ECE 120: Introduction to Computing
$\bigcirc 2016$ Steven S. Lumetta. All rights reserved.

Three Possible Answers for Comparison of A and B

When comparing two numbers, A and B,
we have three possible outcomes:

$$
\begin{aligned}
& \mathrm{A}<\mathrm{B} \\
& \mathrm{~A}=\mathrm{B} \\
& \mathrm{~A}>\mathrm{B}
\end{aligned}
$$

To decide the answer for $\mathbf{N}+1$ bits, we need:

- the answer for \mathbf{N} (less significant) bits,
- one bit of A, and
${ }^{-}$one bit of B.

An Abstract Model of the Comparator Bit Slice

A question for you:
How many bits must pass between slices?
Two!
This figure shows an abstract model of our bit slice.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

We Need a Representation for Answers

A Single Bit Requires Two Minterms on A, B

Another question for you:
Let's start by solving a single bit.
In this case, there are no less significant bits.
three possible answers?
Any way we want!
Our choice of
representation will
affect the amount of logic we need.

So we consider
only A and B.

A B	Z_{1}	Z_{0}	meaning

Fill in the meanings,

0	0	0	0	$A=B$

then the bits.
$010 \begin{array}{lll}0 & 1 & 1\end{array}$
Note that Z_{1} and Z_{0}

1	0	1	0	$A>B$
1	1	0	0	$A=B$

are minterms.

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved

Comparing Two Bits is Fairly Easy
An implementation for a single bit appears below.
This structure forms the core of our bit slice, since it compares one bit of A with one bit of \mathbf{B}.

ECE 120: Introduction to Computing
O2016 Steven S. Lumetta. All rights reserved.
slide 9
e9

When A and B are Equal, Pass Along the Answer
Now for the full problem.
We'll start with the case of $\mathbf{A}=0$ and $\mathrm{B}=0$.

A	,			C_{0}		meanin		Z_{1}	Z_{0}		meaning
0				0		A =	B	0	0		$\mathrm{A}=\mathrm{B}$
0	0			1		A <	B	0	1		A < B
0	0			0		A >	B	1	0		A > B
0				1		???		X	x		don't care

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

When A and B are Equal, Pass Along the Answer

When A and B Differ, Override the Previous Answer
Is there any difference when $\mathbf{A}=1$ and $\mathbf{B}=1$?
No, outputs are the same as the last case.

$$
\begin{aligned}
& \begin{array}{lllllll}
\text { A } & \mathrm{B} & \mathbf{C}_{1} & \mathbf{C}_{0} & \text { meaning } & \mathrm{Z}_{1} & \mathrm{Z}_{0} \\
\hline \mathbf{1} & \mathbf{1} & \boldsymbol{0} & \text { meaning }
\end{array} \\
& \begin{array}{lllllllllll}
1 & 1 & 0 & 0 & A & =B & 0 & A & =B
\end{array} \\
& 11010 \quad 1<B \quad 0 \quad 1 \quad A<B \\
& \begin{array}{llllllllll}
1 & 1 & 1 & 0 & A & > & 1 & A & B
\end{array} \\
& \begin{array}{lllll|lll}
1 & 1 & 1 & 1 & ? ? ? & X & x & \text { don't care }
\end{array}
\end{aligned}
$$

What about case of $\mathrm{A}=0$ and $\mathrm{B}=1$?
Always output $A<B$ (for valid inputs).

A	\mathbf{B}	\mathbf{C}_{1}	\mathbf{C}_{0}	meaning	Z_{1}	Z_{0}	meaning
0	$\mathbf{1}$	0	0				

$01000 \quad A=B \quad 0 \quad 1 \quad A<B$
$01001 \quad A<B \quad 0 \quad 1 \quad A<B$
$01100 \quad A>B \quad 0 \quad 1 \quad A<B$

| 0 | 1 | 1 | 1 | $? ?$ | \mathbf{x} | \mathbf{x} don't care |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.

When A and B Differ, Override the Previous Answer
And the case of $\mathrm{A}=1$ and $\mathrm{B}=0$?
Always output A>B (for valid inputs).

| A B | \mathbf{C}_{1} | \mathbf{C}_{0} | Meaning | Z_{1} | Z_{0} | meaning |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$100000 A=B \quad 1 \quad 0 \quad A>B$
$\begin{array}{llllllllllll}1 & 0 & 0 & 1 & A & 1 & 0 & A & >\end{array}$
$\begin{array}{llllllllllll}1 & 0 & 1 & 0 & A & 1 & 0 & A & >\end{array}$

1	0	1	1	$? ? ?$	\mathbf{x}	x	don't care

ECE 120: Introduction to Computing
$\bigcirc 2016$ Steven S. Lumetta. All rights reserved.

Z_{1} is a Majority Function

Let's use a K-map to solve \mathbf{Z}_{1}.
What are the loops?
AB'
AC_{1}
$\mathrm{B}^{\prime} \mathrm{C}_{1}$
So
$\mathrm{Z}_{1}=A B^{\prime}+\mathrm{AC}_{1}+\mathrm{B}^{\prime} \mathrm{C}_{1}$

ECE 120: Introduction to Computing
O 2016 Steven S. Lumetta. All rights reserved.

Full Implementation as SOP Expressions

