

W	hat's the Best Way to	Wr	rite	Fui	ncti	on F?		
So	$\mathbf{F} = \mathbf{AB'C} + \mathbf{ABC'} + \mathbf{ABC}$	Α	В	С	F			
		0	0	0	0			
But we can also write $\mathbf{F} = \mathbf{AB} + \mathbf{AC}$.	t we can also write	0	0	1	0			
	$\mathbf{F} = \mathbf{AB} + \mathbf{AC}.$	0	1	0	0			
		0	1	1	0			
Wha	hat about $\mathbf{F} = \mathbf{A} (\mathbf{B} + \mathbf{C})^2$	1	0	0	0			
	what about $\mathbf{I} = \mathbf{II}(\mathbf{D} + \mathbf{O})$.	1	0	1	1			
	1171 • 1 • 0	1	1	0	1			
which one is best?		1	1	1	1			
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 3							slide 3	

Your Answer Is Wrong!	Choose a Metric First					
The answer depends on our choice of metric!						
How do we measure good?						
Common answers for circuit des	sign:					
• area / size / cost,	OR					
• performance / speed,	OR					
• power / energy consumption,	OR					
 complexity / reliability. 						
ECE 120: Introduction to Computing \tilde{C} 2016 Steven S. Lun	netta. All rights reserved.	slide 4				

A Delay (Speed) Heuristic for ECE120

Here's a heuristic for delay / speed:
Find the maximum number of gates between any input and any output.
Do not include complements for literals.
Why does it work?

- \circ Each gate takes time switch its output on/off.
- We call this time a **gate delay**.

ECE 120: Introduction to Computing

So it gives an approximate **delay** between inputs changing and outputs changing.

© 2016-2017 Steven S. Lumetta. All rights reserved.

All rights reserved.

slide 7

The Area Heuristic Favors F = A (B + C)

Let's calculate the area heuristic for our three forms of F.

So F = A (B + C) is the smallest design.

	Form of F	Lits	Ops	Area		
	AB'C + ABC' + ABC	9	4	13		
	AB + AC	4	3	7		
	A (B + C)	3	2	5		
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.						

All Forms Are Equivalent in Delay							
All designs are the same for delay.							
Form of F	Lits	Ops	Area	Delay			
AB'C + ABC' + ABC	9	4	13	2			
AB + AC	4	3	7	2			
A (B + C)	3	2	5	2			

 We Have a Winner: F = A (B + C) F = A (B + C) is best by both metrics. But the answers are not always so simple. Sometimes no solution is best by both metrics. See Section 2.1.1 for a simple example. Later in our class, we will explore more space/time tradeoffs in design. 	 ************************************
 In practice, tradeoffs are commonplace. Take a look at Section 2.1.6* for more. 	Complexity is hard to measure, and is usually based on experience.
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 13	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 14