
9/10/2016

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Learning to Test Your Programs

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 1

A Necessary Skill: Testing Code

How do you know that your program works?
There’s only one correct answer: test it!*
Brooks’ Rule of Thumb
◦ 1/3 planning and design
◦ 1/6 writing the program
◦ 1/2 testing

Just because your program compiles
does not mean your program works!

*Becoming a good tester will take years.  
Don’t worry if it seems tough.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 2

Our Next Program Calculates the Roots of a Quadratic

Remember the equation?

F(x) = Ax2 + Bx + C

has roots (F(x) = 0) at 

x = 

where is the square root of N.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 3

Every Statement Must be Executed

How can we test our program?
Let’s start with something simple.
Let’s say that we have a statement 
that is never executed by tests.
Does the statement work correctly?
How can we know?  We have no tests!  
So, no, it does not work correctly.
At a minimum, we must execute every 
statement (called full code coverage).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 4



9/10/2016

What Happens When We Run the Program?

Imagine that we compile and run the 
program.
Take a look at the code.
The first statement is a printf.
The printf always executes, so
◦we can check whether the printf works
◦by simply looking at the output.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 5

Choose a Line of Text as Our First Test

The program then waits for input with scanf.
What input should we give?
Let’s just choose something concrete.
Say “0 0 0” (and then <Enter> to start).
What are the values of variables a, b, and c?

0, 0, and 0
What does scanf return?
What happens next?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 6

3
Skip the “then” block!

Continue Analyzing Until the End

With input “0 0 0” our program next
◦prints the equation to be solved, and
◦ calculates the discriminant D.
What is the value of D?  
(Remember that a, b, and c are all 0.)
So which of the three if-else blocks is 
executed (first, second, or third)?
And what is x1?  

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 7

0

second
0 / 0  →   NaN

Was that a Bug?

I think so.
The equation is not quadratic when a is 0.
The person who wrote the code 
perhaps didn’t think of that case.
And neither did I when I edited the code
to present to you.
Bugs can be subtle, and testing can be hard!
We won’t fix the bug.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 8



9/10/2016

Remember: We Want Full Code Coverage

Let’s try again with input “1 0 0”.
The same parts of the code execute.
And x1 is?
So the single root is at 0, and
the program ends successfully.
Our equation was F(x) = x2 (+0x + 0), so 
plugging in x = 0 does produce F(x) = 0.

But our test does not execute all code!

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 9

0

Adjust the Inputs to Change the if-else Results

What statements did not execute?
◦ “then” block of scanf check
◦ first case of if-else solution computation
◦ third case of if-else solution computation
Let’s adjust our inputs 
to execute the other solution cases.
“1 0 0” gave the second case because 
D was not positive and D was 0.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 10

Use “1 0 1” to Test the Third if-else Case

To get D negative, change c to 1 
(then D is -4 == 0 * 0 – 4 * 1 * 1).
For the next test,
◦we type “1 0 1”,
◦and the program tells us 
◦ there are no real roots.

Our equation was F(x) = x2 (+ 0x) + 1, so 
in fact no value of x can produce F(x) = 0.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 11

Use “1 1 0” to Test the First if-else Case

For the first if-else case, we need D positive.
To get D positive, change b to 1 and c to 0
(then D is 1 == 1 * 1 – 4 * 1 * 0).
For the next test,
◦we type “1 1 0”,
◦and the program gives roots at 0 and -1.

Our equation was F(x) = x2 + x (+ 0), so 
F(x) = 0 at both x = 0 and at x = -1.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 12



9/10/2016

We Need to Execute the “then” Block of scanf

So far, we have four tests:
“0 0 0” (known bug), “1 0 0”, “1 0 1”, “1 1 0”
But we still need a test to execute 
the “then” block of the scanf check!
Anything that stops scanf from finding three 
numbers will do.  Let’s type “hello”.
So five tests (and verifying the output 
by hand!) gives full code coverage for this 
program.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 13

Good Testing Must Consider Both Purpose and Structure

Full code coverage is just a starting point.
In fact, you should notice that
◦ one of our tests (“0 0 0”) 
◦ exposes a bug 
◦ in a statement that was already covered 
◦by another test (“1 0 0”).

In general, good testing requires that one 
think carefully about the purpose of the 
code as well as the structure of the code.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 14

So Easy that a Computer Can Do It

Full code coverage is easy to explain.
Finding tests to cover more statements
means solving some equations.
Computers are good at that (well … pretty good).
The automatic programming feedback tool uses 
this approach to try to find bugs in your code:
◦ generate tests to cover everything (if possible),
◦ then compare your program’s results with a 

“gold” program (written by a professor or TA).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 15

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *


