

Spend a Week Learning the C Programming Language

© 2016 Steven S. Lumetta. All rights reserved.

Before we move upwards from bits into gates, we will spend a week on the language C.

Why?

- Allow more time to **become familiar with mechanical aspects** of computer languages (2 semesters instead of 2/3 of a semester in ECE classes a few years ago).
- Start simple: make small modifications.
- Read examples before writing your own.

ECE 120: Introduction to Computing

slide 4

slide 7

Computers (Programs) Help with Digital Design

© 2016 Steven S. Lumetta. All rights reserved.

Remember: the world is digital.

So we will

ECE 120: Introduction to Computing

• **connect these skills** (expressing tasks and reading **C** programs) **to the material** (how to build a computer)

• to help you learn the skills

• and to realize that **computers can help** with much of what you are learning.

What about Programming? So far, computers don't know how to program. In our class, • you will start learning that skill (art) • in part 4 of the class (week 12 / early April in Spring, or early November in Fall).

Pitfall: "Functions" in Programs are not Funct	ions in Math
Be careful about terminology: • main is a "function"	
• in the syntactic sense of the C language (a set of variable declarations and a sequence of statements ending with a return statement)	
• but not necessarily in the mathematical sense.	
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.	slide 15

Pitfall #3: Variables in C are Not Variables in Algebra

In algebra, a variable is a name for a value.

A variable's value does not change.

For example:

- If we write **A=42** in algebra,
- the variable A continues to be equal to 42
- for the duration of that problem or calculation.

In C, any statement can change the value of a variable.

ECE 120: Introduction to Computing © 2016 Steven S. I

 \odot 2016 Steven S. Lumetta. All rights reserved.

slide 19

Pitfall #4: Primitive Data Types Depend on the System

Since the C language was designed to be efficient, **primitive data types are tuned to the system**.

Unfortunately, that means the actual data type can vary from one compiler to another.

For example, **long int** may be a **32-bit 2's complement** value, or it may be a **64-bit 2's complement** value.

Use int32_t or int64_t to be specific.

ECE 120: Introduction to Computing

 $\ensuremath{\mathbb{C}}$ 2016 Steven S. Lumetta. All rights reserved.

slide 23

Code Examples in Slides Use Only a Few Types

We use these data types in examples.

name	meaning on lab machines		
char	8-bit 2's complement / ASCII		
int	32-bit 2's complement		
(.	Add "unsigned" before types		
	above for unsigned.)		
float	IEEE 754 single-precision		
	floating-point (32 bits)		
double	IEEE 754 double-precision		
	floating-point (64 bits)		
See the notes for a more complete listing.			
ECE 120: Introduction	to Computing © 2016 Steven S. Lumetta. All rights reserved.	slide 24	

Variables Always Contain Bits

The initialization for a variable is optional. So the following is acceptable: <data type> <identifier>; For example, int i; What is the initial value of i? You guessed it! **BITS**! (They may be 0 bits, but they may not be.) ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

slide 27

Statements Tell the Computer What to Do In **C**, a statement specifies a complete operation. In other words, a statement tells the computer to do something. The function **main** includes a sequence of statements. When program is **started** (or **runs**, or **executes**), • the computer executes the statements in main • in the order that they appear in the program. ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 28