
1/31/2017

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Introduction to the
C Programming Language

ECE 120: Introduction to Computing © 2016-2017 Steven S. Lumetta. All rights reserved. slide 1

Few Programmers Write Instructions (Assembly Code)

ECE 120: Introduction to Computing © 2016-2017 Steven S. Lumetta. All rights reserved. slide 2

Problems/Tasks

Algorithms

Machine/Instruction Set
Architecture (ISA)

Microarchitecture

Circuits

Devices

Computer Language

So far, you learned
to use bits to represent
information.
Our class will teach you
how to design a
computer.
But computer instructions
are quite simple (add two
numbers, copy some bits).
Not many programmers
use them directly.

Most Programs Are Written in High-Level Languages

ECE 120: Introduction to Computing © 2016-2017 Steven S. Lumetta. All rights reserved. slide 3

Problems/Tasks

Algorithms

Machine/Instruction Set
Architecture (ISA)

Microarchitecture

Circuits

Devices

Computer Language

Since 1954 (FORTRAN),
people have been trying
to bridge the semantic
gap between human
problems/tasks and ISAs.
The result is 1000s of
computer languages.
Most programs are
written in these
languages.

Spend a Week Learning the C Programming Language

Before we move upwards from bits into gates,
we will spend a week on the language C.
Why?
◦Allow more time to become familiar with
mechanical aspects of computer languages
(2 semesters instead of 2/3 of a semester in
ECE classes a few years ago).

◦Start simple: make small modifications.
◦Read examples before writing your own.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 4

1/31/2017

We Will Not Teach You How to Program (Yet)

To be clear:
Programming means translating a human
task into an algorithm expressed in a
computer language (or an ISA).

We are NOT teaching you how to program
yet.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5

So What ARE We Teaching You Now?

Three skills:
◦how to express certain types of tasks
formally enough for a computer to
understand them,

◦how to read and interpret (simple)
formal expressions of computation in C,
and

◦how to use a compiler to translate a C
program into instructions.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 6

Computers (Programs) Help with Digital Design

Remember: the world is digital.
So we will
◦connect these skills (expressing tasks and
reading C programs) to the material (how
to build a computer)

◦ to help you learn the skills
◦and to realize that computers can help
with much of what you are learning.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 7

What about Programming?

So far, computers don’t know how to
program.
In our class,
◦ you will start learning that skill (art)
◦ in part 4 of the class
(week 12 / early April in Spring,
or early November in Fall).

ECE 120: Introduction to Computing © 2016-2017 Steven S. Lumetta. All rights reserved. slide 8

1/31/2017

A Brief History of C

The C programming language was
◦developed by Dennis Ritchie in 1972
◦ to simplify the task of writing Unix.
C has a transparent mapping to typical ISAs:
◦ easy to understand the mapping (ECE220)
◦ easy to teach a computer:
C compiler (a program) converts a
C program into instructions

C was first standardized in 1989 by ANSI.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9

The function main executes
when the program starts.

After main has finished,
the program terminates.

Starting a Program Executes its main Function

Let’s take a look at a C program…
int
main ()
{

int answer = 42; /* the Answer! */

printf ("The answer is %d.\n", answer);

/* Our work here is done.
Let's get out of here! */

return 0;
}

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 10

A sequence of
statements.

Declarations for
variables used by main.

The Function main Divides into Two Parts

main consists of two parts…
int
main ()
{

int answer = 42; /* the Answer! */

printf ("The answer is %d.\n", answer);

/* Our work here is done.
Let's get out of here! */

return 0;
}

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 11

Prints “The answer is 42.”
followed by an ASCII

newline character
to the display.

Terminates the program;
returns 0 (success, by convention)

to the operating system.

What Does the Program Do? Execute Statements in Order

int
main ()
{

int answer = 42; /* the Answer! */

printf ("The answer is %d.\n", answer);

/* Our work here is done.
Let's get out of here! */

return 0;
}

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 12

1/31/2017

Comments can span
more than one line.

Comments start with /*
and end with */ .

Comments Help Human Readers (Including the Author!)

Good programs have many comments…
int
main ()
{

int answer = 42; /* the Answer! */

printf ("The answer is %d.\n", answer);

/* Our work here is done.
Let's get out of here! */

return 0;
}

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 13

So Far, We Have Four Pieces of C Syntax

a few elements of C syntax*:
◦main: the function executed
when a program starts

◦variable declarations specify
symbolic names and data types

◦ statements tell the computer what to do
◦comments help humans to
understand the program

* A computer language’s syntax specifies the rules that one must
follow to write a valid program in that language.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 14

Pitfall: “Functions” in Programs are not Functions in Math

Be careful about terminology:
◦main is a “function”

◦ in the syntactic sense of the C language
(a set of variable declarations and
a sequence of statements ending with a
return statement)

◦but not necessarily in the
mathematical sense.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 15

A “Function” is a Block of Code that Returns a Value

For example,
◦ although main does return an integer,
◦ we can write a program that returns a
random integer from 0 to 255.

Given the same inputs,
◦ the value returned is not unique, and
◦ the value returned is not reproducible

(running the program two times can give
different answers).

◦ Both properties are required for
a mathematical function.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 16

1/31/2017

Pitfall #2: “Functions” are Not Algorithms

The main function is not necessarily an
algorithm.
For example, we can write a program that
runs forever (never terminates, and never
returns a value).
Algorithms must be finite
(see Patt & Patel).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 17

Variable Declarations Allocate and Name Sets of Bits

Variable declarations
◦ allow the programmer to name sets of bits
◦ and to associate a data type

The declaration int answer = 42;

tells the compiler…
◦ to make space for a 32-bit 2’s complement

number (an int),
◦ to initialize the bits to the bit pattern for 42,
◦ and to make use of those bits whenever a

statement uses the symbolic name answer.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 18

Pitfall #3: Variables in C are Not Variables in Algebra

In algebra, a variable is a name for a value.
A variable’s value does not change.
For example:
◦ If we write A=42 in algebra,
◦ the variable A continues to be equal to 42
◦ for the duration of that problem or
calculation.

In C, any statement can change
the value of a variable.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 19

Variables in C are Sets of Bits (0s and 1s)

In C, a variable is a name for a set of bits.
The bits will (of course!)
always be 0s and 1s.
But variables in C can change value as
the program executes.
Other properties of a variable must be
inferred from the program (in the example
program, answer is always 42, because no
statement changes answer).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 20

1/31/2017

Each Variable Has a Specific Data Type

Many languages (such as C) require that the
programmer specify a data type for each variable.
A C compiler uses a variable’s data type to
interpret statements using that variable.
For example, a “+” operation in C might mean
to add two sets of bits
◦ as unsigned bit patterns,
◦ as 2’s complement bit patterns, or
◦ as IEEE single-precision floating-point bit

patterns.
The compiler generates the appropriate instructions.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 21

Primitive Data Types are Always Available

Primitive data types
◦part of the C language
◦ include unsigned, 2’s complement, and
IEEE floating-point

◦8-bit primitive data types can also be
used to store ASCII characters

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 22

Pitfall #4: Primitive Data Types Depend on the System

Since the C language was designed to be
efficient, primitive data types are tuned to
the system.
Unfortunately, that means the actual data
type can vary from one compiler to another.
For example, long int may be a
32-bit 2’s complement value, or it may be a
64-bit 2’s complement value.
Use int32_t or int64_t to be specific.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 23

Code Examples in Slides Use Only a Few Types

We use these data types in examples.
name meaning on lab machines
char 8-bit 2’s complement / ASCII
int 32-bit 2’s complement

(Add "unsigned" before types
above for unsigned.)

float IEEE 754 single-precision
floating-point (32 bits)

double IEEE 754 double-precision
floating-point (64 bits)

See the notes for a more complete listing.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 24

1/31/2017

Each Variable Also Has a Name (an Identifier)

Rules for identifiers in C
◦ composed of letters and digits
(start with a letter)

◦any length
◦use words to make the meaning clear
◦avoid using single letters in most cases

◦case-sensitive
◦The following are distinct identifiers:
variable, Variable, VARIABLE, VaRiAbLe.

◦Do NOT use more than one!

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 25

Examples of Variable Declarations

Putting the pieces together, a variable
declaration is
<data type> <identifier> = <value>;

Here are a few examples:
int anIntegerIn2sComplement = 42;

unsigned int andOneUnsigned = 100;

float IEEE_754_is_Cool = 6.023E23;

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 26

Variables Always Contain Bits

The initialization for a variable is optional.
So the following is acceptable:
<data type> <identifier>;

For example,
int i;

What is the initial value of i?
You guessed it! BITS!
(They may be 0 bits, but they may not be.)

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 27

Statements Tell the Computer What to Do

In C, a statement specifies a complete operation.
In other words, a statement tells the computer
to do something.
The function main includes a sequence of
statements.
When program is started (or runs, or executes),
◦ the computer executes the statements in
main

◦ in the order that they appear in the program.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 28

