

How Do We Decide What to Represent?

Let's think about integer (whole number) representations.

What numbers should we represent?

• Some random set?

ECE 120: Introduction to Computing

- Everyone in our class' favorite number (mine is 42!)?
- A contiguous set starting with 0?

© 2016 Steven S. Lumetta. All rights reserved.

slide 3

slide 7

What Can the Unsigned Representation Represent?

What range of integers can be represented with the *N*-bit unsigned representation? • smallest value... all 0s • largest value ... all 1s

Note that $100...000_2$ (N 0s after a 1) is 2^{N} .

The range is thus $[0, 2^{N} - 1]$.

ECE 120: Introduction to Computing © 2016 Steven S. Lumet

 $\ensuremath{\mathbb{C}}$ 2016 Steven S. Lumetta. All rights reserved.

Example: the Unsigned Bit Pattern for $D = 37$.				
$37 = \mathbf{a}_5 2^5 + \mathbf{a}_4 2^4 + \mathbf{a}_3 2^3 + \mathbf{a}_2 2^2 + \mathbf{a}_1 2^1 + \mathbf{a}_0 2^0$				
37 is odd, so $\mathbf{a}_0 = 1$.				
$(37-1)/2 = (a_52^5 + a_42^4 + a_32^3 + a_22^2 + a_12^1)/2$				
$18 = \mathbf{a}_5 2^4 + \mathbf{a}_4 2^3 + \mathbf{a}_3 2^2 + \mathbf{a}_2 2^1 + \mathbf{a}_1 2^0$				
18 is even, so $\mathbf{a}_1 = 0$.				
$(18 - 0)/2 = (a_52^4 + a_42^3 + a_32^2 + a_22^1)/2$				
$9 = a_5 2^3 + a_4 2^2 + a_3 2^1 + a_2 2^0$				

© 2016 Steven S. Lumetta. All rights reserved.

ECE 120: Introduction to Computing

Example: the Unsigned Bit Pattern for D = 37.

```
9 = a_5 2^3 + a_4 2^2 + a_3 2^1 + a_2 2^0

9 is odd, so a_2 = 1.

(9 - 1)/2 = (a_5 2^3 + a_4 2^2 + a_3 2^1)/2

4 = a_5 2^2 + a_4 2^1 + a_3 2^0

4 is even, so a_3 = 0.

(4 - 0)/2 = (a_5 2^2 + a_4 2^1)/2

2 = a_5 2^1 + a_4 2^0
```

ECE 120: Introduction to Computing

slide 11

© 2016 Steven S. Lumetta. All rights reserved.

Example: the Unsigned Bit Pattern for D = 37.					
$2 = a_5 2^1 + a_4 2^0$					
2 is even, so $\mathbf{a}_4 = 0$.					
$(2-0)/2 = (a_5 2^2)/2$					
$1 = a_5 2^0$					
Putting the bits together, we obtain					
37 ₁₀ = 100101					
Note: be sure to put the bits in the right order!					
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.	slide 13				

Example: We don't ne	ed to	Unsig	med Bit Pattern for D = 137. ne polynomial	
$\begin{array}{c} (137-1) / 2 \\ (68-0) / 2 \\ (34-0) / 2 \\ (17-1) / 2 \\ (8-0) / 2 \\ (4-0) / 2 \\ (2-0) / 2 \\ (1-1) / 2 \end{array}$	2 = 68 = 34 = 17 = 8 = 4 = 2 = 1 = 0	$ \begin{array}{c} \rightarrow 1 \\ \rightarrow 0 \\ \rightarrow 0 \\ \rightarrow 1 \\ \rightarrow 0 \\ \rightarrow 0 \\ \rightarrow 0 \\ \rightarrow 1 \\ (done) \end{array} $	$137_{10} = 10001001$ Read the bits from bottom to top (and add leading 0s if needed).	
ECE 120: Introduction to Con	nputing	© 2	016 Steven S. Lumetta. All rights reserved.	slide 14