Homework 5: Boolean Algebra

As with Homework #4, in this assignment, minimal SOP and POS refer to the K-map solutions with minimal area heuristic discussed in class (literals + operations, not counting complements on literals). When we ask for SOP and POS expressions, you need only consider expressions in these forms, and solving the K-map as shown in class produces the correct answer. The online exercises will help you to practice these skills.

1. **Helping Your Friends**

 Your friends have developed a circuit to control the lights and music in their shared apartment, but they want you to check that the circuit works correctly for them.

 The input to the circuit is a 5-bit number \(H = H_5 H_4 H_3 H_2 H_1 H_0 \) hour number ranging from 0 to 23, which changes value once per hour to match the current time.

 Your friends have designed the logic shown below to output a signal \(L \) that turns the lights on (\(L = 1 \)) and off (\(L = 0 \)) at their usual hours. Similarly, the signal \(M \) turns their music on (\(M = 1 \)) and off (\(M = 0 \)) at their usual hours.

 ![Logic Diagram]

 a. Analyze the circuit that calculates \(L \) and identify at what hours the lights turn on throughout the day (when \(L = 1 \)). For your answer, simply write the hour numbers (in decimal). For example, if the lights are on when \(H = 4 \) to 7, you could write “4-7” or “4, 5, 6, 7,” or just “4 to 7.” Show your work.

 b. Analyze the circuit that calculates \(M \) and identify at what hours the music turns on throughout the day (when \(M = 1 \)). For your answer, simply write the hour numbers (in decimal). For example, if the music is on when \(H = 16 \) to 20, you could write “16-20” or “16, 17, 18, 19, 20,” or just “16 to 20.” Show your work.
2. Analyzing NOR Structures
Based on the circuit shown to the right,
 a. Write POS expressions for all four output variables: W, X, Y, and Z.
 b. Write a truth table showing the values of all four outputs as a function of the four inputs B, S₂, S₁, and S₀.

3. VR Motion Waveforms
 You are responsible for implementing the two waveforms shown below for controlling different motions in your company’s new virtual reality (VR) simulation engine. You must design a circuit that emits the two waveforms based on a 1-bit waveform selector input F and on a counter value C₂C₁C₀. One waveform lasts six cycles, and the other lasts four. Based on these four bits of input, your circuit must produce a 2-bit unsigned “height” value H₁H₀.
 a. Write a truth table (using inputs FC₂C₁C₀) for outputs H₁ and H₀. Don't forget to include the "don't-cares" in the table!
 b. Turn your table from part (a) into a Karnaugh Map for each output variable.
 c. Write a minimal SOP expression for both H₁ and H₀.
 d. Write a minimal POS expression for both H₁ and H₀. Are your expressions equivalent to your answers to part (c)? Why or why not?
 e. Now replace all x's in your K-map for H₀ from part (b) with 0s and write a minimal SOP expression from the resulting K-map.
 f. Implement your expressions for H₀ from parts (c) and (e) using only NAND gates. Assume that complemented inputs are available. Which circuit is simpler to implement? Why?
4. **Simplifying with Don’t Cares**

The function \(G(A,B,C,D) \) is specified by the Karnaugh map to the right.

(a) List all prime implicants that include at least one ‘1’ of function \(G(A,B,C,D) \).

(b) Find a minimal SOP expression for \(G(A,B,C,D) \).

(c) Find a minimal POS expression for \(G(A,B,C,D) \).

(d) Are the functions that you found for parts (b) and (c) equivalent? Justify your answer.

<table>
<thead>
<tr>
<th></th>
<th>(G)</th>
<th>(AB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>x</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

5. **Serving Coffee: Another Word Problem**

Prof. Lumetta has heard that the library café may close. In an act of desperation, he copied down the menu of caffeinated beverages. Your job, should you choose to accept it (and engineers always accept jobs that involve points towards a grade!), is to design the equations that control release of various ingredients for the drinks.

Given a four bit drink number \(D = D_3D_2D_1D_0 \), draw a K-map and calculate a minimal SOP expression for each of the following eight ingredients: \(W \), water; \(S \), steamed milk; \(F \), foamed milk; \(H \), hazelnut syrup; \(V \), vanilla syrup; \(C \), chocolate; \(R \), caramel syrup; and \(I \), ice. Each ingredient’s output should equal 1 iff the drink \(D \) includes that ingredient.

Drinks and their contents are as follows. Drink #0 doesn’t exist:

- #1 espresso
- #2 caffe Americano
- #3 cold caffe Americano
- #4 cappucino
- #5 cold cappuccino
- #6 cocoa cappuccino
- #7 caramel macchiato
- #8 caffe latte
- #9 cold caffe latte
- #10 hazelnut caffe latte
- #11 cold hazelnut caffe latte
- #12 vanilla caffe latte
- #13 cold vanilla caffe latte
- #14 cafe mocha
- #15 cold cafe mocha

One more question: if espresso is put into every drink, what is produced if \(D=0 \) is used with your equations?
6. **Helping Your Classmates**

Let’s be honest: the canteen is just plain overcrowded at noon (1200). Help your classmates by producing a circuit that helps them decide when to leave for the canteen.

Input variables include the following:
- \(E \) — end of service; 1300 is coming soon if \(E = 1 \)
- \(N \) — noon; if they leave when \(N = 1 \), they will arrive too close to 1200
- \(R \) — rain; if \(R = 1 \), it’s raining outside (again!)
- \(C \) — conversation; if \(C = 1 \), there’s a good conversation in progress

Draw a K-map and calculate minimal SOP and POS expressions for the function \(L(E,N,R,C) \) based on the following rules:

1. If the time is approaching 1300, leave immediately.
2. Otherwise, if leaving means arriving close to 1200, wait for a while.
3. Otherwise, if the rain has stopped or conversation has stalled (no good conversation in progress), leave immediately.
4. Otherwise, wait.

Note that not all input combinations are possible. Handle impossible cases appropriately.

7. **Printing a K-map**

Update your Subversion repository to obtain the `hw5` subdirectory. In that directory is a file called `kmap.c`, which is intended to print a 3-input K-map to the monitor. Unfortunately, the code is not quite complete. You must add two pieces to the code.

a. First, calculate the input variable \(c \) as a function of the variables \(b \) and \(d \). Read the code for more details.

b. Next, use C operators to calculate the function

\[
f(a, b, c) = abc' + c(a' + b') + b'c'.
\]

Be sure that \(f \) can take values of only 0 and 1. Then print the value of \(f \) to the monitor using `printf`. Use enough spaces so that the K-map output looks correct.

Commit your modified code to your Subversion repository.