Homework 3: Basic C Programs

1. Analysis of a C Program
 Read and analyze the program below, then answer the following questions about the program’s behavior when compiled and executed by a user.
 a. If the user enters the following sequence of samples—17, -29, 33, 100, 50, -91, 217, 42, 42, 188—what exactly does the program output after all samples have been entered?
 The A value is 217.
 The B value is -91.
 b. If the user enters the following sequence of samples—0, 5, 9, 100, 99, 42, 18, 10, -10, 77 what exactly does the program output after all samples have been entered?
 The A value is 100.
 The B value is -10.
 c. What is the relationship between the samples entered by the user and the variable A printed at the end of the program? In other words, what value is printed for A in terms of the samples?
 A is the value of the largest sample (the maximum over samples).
 d. What is the relationship between the samples entered by the user and the variable B printed at the end of the program? In other words, what value is printed for B in terms of the samples?
 B is the value of the smallest sample (the minimum over samples).

#include <stdio.h>

int main ()
{
 int i;
 int sample;
 int A;
 int B;

 /* Read the first sample. */
 printf ("Enter the first sample: ");
 /* The expression "scanf (...)" returns the number of */

 /* Enter the first sample: */
 scanf ("%d", &sample);
 A = sample;
 printf ("The A value is %d.\n", A);

 /* Enter the second sample: */
 scanf ("%d", &sample);
 if (sample < A) { A = sample; }
 printf ("The A value is %d.\n", A);

 /* Enter the third sample: */
 scanf ("%d", &sample);
 if (sample < A) { A = sample; }
 if (sample > B) { B = sample; }
 printf ("The A value is %d, the B value is %d.\n", A, B);

 /* Enter the fourth sample: */
 scanf ("%d", &sample);
 if (sample < A) { A = sample; }
 if (sample > B) { B = sample; }
 printf ("The A value is %d, the B value is %d.\n", A, B);

 /* Enter the fifth sample: */
 scanf ("%d", &sample);
 if (sample < A) { A = sample; }
 if (sample > B) { B = sample; }
 printf ("The A value is %d, the B value is %d.\n", A, B);

 /* Enter the sixth sample: */
 scanf ("%d", &sample);
 if (sample < A) { A = sample; }
 if (sample > B) { B = sample; }
 printf ("The A value is %d, the B value is %d.\n", A, B);

 /* Enter the seventh sample: */
 scanf ("%d", &sample);
 if (sample < A) { A = sample; }
 if (sample > B) { B = sample; }
 printf ("The A value is %d, the B value is %d.\n", A, B);

 /* Enter the eighth sample: */
 scanf ("%d", &sample);
 if (sample < A) { A = sample; }
 if (sample > B) { B = sample; }
 printf ("The A value is %d, the B value is %d.\n", A, B);

 /* Enter the ninth sample: */
 scanf ("%d", &sample);
 if (sample < A) { A = sample; }
 if (sample > B) { B = sample; }
 printf ("The A value is %d, the B value is %d.\n", A, B);

 /* Enter the tenth sample: */
 scanf ("%d", &sample);
 if (sample < A) { A = sample; }
 if (sample > B) { B = sample; }
 printf ("The A value is %d, the B value is %d.\n", A, B);

 return 0;
}
if (1 != scanf("%d", &sample)) {
 printf("Numeric samples only!\n");
 /* Quit indicating failure (anything non-zero, */
 /* by convention). */
 return 3;
}

/* Process the first sample. */
A = sample;
B = sample;

for (i = 2; 10 >= i; i = i + 1) {
 /* Read another sample. */
 printf("Enter sample #%d: ", i);
 if (1 != scanf("%d", &sample)) {
 printf("Numeric samples only!\n");
 /* Quit indicating failure (anything non-zero, */
 /* by convention). */
 return 3;
 }
 /* Process the next sample. */
 if (A < sample) {
 A = sample;
 }
 if (B > sample) {
 B = sample;
 }
}

/* Print the results. */
printf("The A value is %d.\n", A);
printf("The B value is %d.\n", B);

/* Program has finished successfully, */
/* so return 0 by convention. */
return 0;
2. **Analysis of a C Program, Part II**

Read and analyze the program below, then answer the following questions about the program’s behavior when compiled and executed by a user.

a. If the user enters the following sequence of samples—80, 70, 50, 30, 40, 90, 10, 20, 60, 0—what exactly does the program output after all samples have been entered?

45

b. If the user enters the following sequence of samples—8, 7, 5, 3, 4, 9, 1, 2, 6, 0—what exactly does the program output after all samples have been entered?

0

c. In one or two sentences, explain why the value printed by the program in response to the samples given in part (b) does not match the value that a human might expect.

The variable `average` is an integer; for all samples in part (b), `(sample/10)` evaluates to an integer value of 0. The sum of ten 0s is 0.

d. In one or two sentences, suggest a change to the program to make the calculation of the average more accurate.

Sum up all inputs first, then divide the value by 10. Or use `float` instead of `int`.

```c
#include <stdio.h>

int main ()
{
    int i;
    int sample;
    int average = 0;
    for (i = 1; 10 >= i; i = i + 1) {
        /* Read a sample. */
        printf ("Enter sample #\%d: ", i);
        if (1 != scanf ("%d", &sample)) {
            printf ("Numeric samples only!\n");
            /* Quit indicating failure (anything non-zero, *
             * by convention). */
            return 3;
        }
    }
    /* Process the next sample. */
    average = average + (sample / 10);
}

/* Print the results. */
printf ("The average is %d.\n", average);

/* Program has finished successfully, *
 * so return 0 by convention. */
return 0;
}
```
3. **C Operators**

Calculate the decimal value for each of the following C expressions, assuming that variable X has value 191, variable Y has value 27, and both have type `int` (assume 32-bit 2's complement).

For illustration, we'll use 9-bit 2's complement first. The higher 23 bits are copies of the sign bit.

a. \((X \& Y) = (0\,1011\,1111 \& 0\,0001\,1011) = 0\,0001\,1011 = 27_{10}\)

b. \((X \mid Y) = (0\,1011\,1111 \mid 0\,0001\,1011) = 0\,1011\,1111 = 191_{10}\)

c. \((Y >> 3) = (0\,0001\,1011 >> 3) = 0\,0000\,0011 = 3_{10}\)

d. \((X ^ Y) = (0\,1011\,1111 ^ 0\,0001\,1011) = 0\,1010\,0100 = 164_{10}\)

e. \((\neg X) = 1\,0100\,0000 = -192_{10}\)

f. \(((\neg Y) >> 3)\) note: arithmetic right shift
 i. \((\neg Y) = \neg Y + 1 = 1\,1110\,0100 + 1 = 1\,1110\,0101\)
 ii. \(((\neg Y) >> 3) = (1\,1110\,0101 >> 3) = 1\,1111\,1100 = -4_{10}\)

g. \((X + Y) / 3 = (0\,1011\,1111 + 0\,0001\,1011)/3 = (0\,1110\,1010)/3 = 218/3 = 72_{10}\)

4. **Finding Your Key**

Download, compile, and execute the program `cryptic.c`. Type in your ZJUI ID number without spaces and record the output of the program. Please note that you are not asked to understand the output nor to understand the program, which makes use of C constructs that you will learn in ECE220. We are only checking that you know how to compile.

5. **Understanding Loops in C**

Consider the C loop shown below. Variables x and i both have type `int`.

```c
for (i = 0; x > i; i = i + 4) {
    /* This is the loop body. */
}
```

How many times does the loop body execute...

a. ...when variable x is 18? 5 (i takes values 0, 4, 8, 12, and 16 in the loop body)

b. ...when variable x is 42? 11

c. ...when variable x is 99? 25

d. ...when variable x is 0? 0
6. **Understanding Conditionals in C**
 The conditional construct

   ```c
   if (-20 > Y) { printf ("Y"); }
   ```

is inserted at one of the “insertion points” in the code below.

   ```c
   if (42 == X) {
       printf ("X");
       /* INSERTION POINT A */
   } else {
       /* INSERTION POINT B */
   }
   /* INSERTION POINT C */
   ```

 For each insertion point (A, B, and C), indicate under what conditions—in other words, for what values of variables X and Y—the resulting code prints nothing, “X”, “Y”, and “XY.” For example, if the conditional construct based on Y is NOT inserted, the answer should appear as follows:

 - prints nothing when X ≠ 42,
 - prints “X” when X = 42,
 - never prints “Y,” and
 - never prints “XY.”

 At point A:
 - prints nothing when X ≠ 42,
 - prints “X” when X = 42 and Y ≥ -20
 - never prints “Y”
 - prints “XY” when X = 42 and Y < -20

 At point B:
 - prints nothing when X ≠ 42 and Y ≥ -20
 - prints “X” when X = 42
 - prints “Y” when X ≠ 42 and Y < -20
 - never prints “XY”

 At point C:
 - prints nothing when X ≠ 42 and Y ≥ -20
 - prints “X” when X = 42 and Y ≥ -20
 - prints “Y” when X ≠ 42 and Y < -20
 - prints “XY” when X = 42 and Y < -20

7. **Using Old Midterm Exams to Study**
 Do Problem #5 from ECE120 Fall 2016 Midterm #1. The exam is posted in the “Old Exams” portion of the class web page for you to use as a study tool.