

slide 3

Start with the Sign Bits

Let's try a little harder first...

If we compare two non-negative numbers,

- the approach IS the same.
- Right?

ECE 120: Introduction to Computing

Maybe we can just use some extra logic to handle the sign bits?

© 2016 Steven S. Lumetta. All rights reserved.

Consider All Possible Combinations of Sign Bits

Let's make a table based on the sign bits:

	A_s	$\mathbf{B}_{\mathbf{s}}$	interpretation	solution		
	0	0	$A \ge 0 \ AND \ B \ge 0$	use unsigned		
				comparator		
	0	1	${\rm A} \geq 0$ AND ${\rm B} < 0$	A > B		
	1	0	A < 0 AND B ≥ 0	A < B		
	1	1	$\mathbf{A} < 0 \; \mathbf{AND} \; \mathbf{B} < 0$	unknown		
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 4						

slide 7

We Need Special Logic for the Sign Bits

Now we can complete our table:

	A_s	$\mathbf{B}_{\mathbf{s}}$	interpretation	solution	
	0	0	$A \ge 0 \ AND \ B \ge 0$	use unsigned	
				comparator	
	0	1	$\mathrm{A} \geq 0$ AND $\mathrm{B} < 0$	A > B	
	1	0	$\mathbf{A} < 0 \ \mathbf{AND} \ \mathbf{B} \geq 0$	A < B	
	1	1	$\mathbf{A} < 0 \; \mathbf{AND} \; \mathbf{B} < 0$	use unsigned	
				comparator	
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.					

Simply Flip the Wires on the Most Significant Bit

	Can we just flip the wires on the sign bits? For $A_s = 0$ and $B_s = 1$, • we feed in $A_{N-1} = 1$ and $B_{N-1} = 0$, and • the unsigned comparator produces $A > B$. For $A_s = 1$ and $B_s = 0$, • we feed in $A_{N-1} = 0$ and $B_{N-1} = 1$, and • the unsigned comparator produces $A < B$. What about when $A_s = B_s$? Flipping the bits then has no effect! Answers are also correct in those cases.	
	Answers are also correct in those cases.	
Answers are also correct in those cases.	Flipping the bits then has no effect!	
Flipping the bits then has no effect! Answers are also correct in those cases.	What about when $\mathbf{A}_{s} = \mathbf{D}_{s}$.	
Flipping the bits then has no effect! Answers are also correct in those cases.	What about when $A = B^2$	
What about when As = Bs?Flipping the bits then has no effect!Answers are also correct in those cases.	\circ the unsigned comparator produces $A < B$.	
 the unsigned comparator produces A < B. What about when A_s = B_s? Flipping the bits then has no effect! Answers are also correct in those cases. 	• we feed in $A_{N_1} = 0$ and $B_{N_1} = 1$, and	
 we feed in A_{N-1} = 0 and B_{N-1} = 1, and the unsigned comparator produces A < B. What about when A_s = B_s? Flipping the bits then has no effect! Answers are also correct in those cases. 	For $A_1 = 1$ and $B_2 = 0$.	
For $A_s = 1$ and $B_s = 0$, • we feed in $A_{N-1} = 0$ and $B_{N-1} = 1$, and • the unsigned comparator produces $A < B$. What about when $A_s = B_s$? Flipping the bits then has no effect! Answers are also correct in those cases.	• the unsigned comparator produces A > B .	
• the unsigned comparator produces $A > B$. For $A_s = 1$ and $B_s = 0$, • we feed in $A_{N-1} = 0$ and $B_{N-1} = 1$, and • the unsigned comparator produces $A < B$. What about when $A_s = B_s$? Flipping the bits then has no effect! Answers are also correct in those cases.	• we feed in $A_{N-1} = 1$ and $B_{N-1} = 0$, and	
• we feed in $A_{N-1} = 1$ and $B_{N-1} = 0$, and • the unsigned comparator produces $A > B$. For $A_s = 1$ and $B_s = 0$, • we feed in $A_{N-1} = 0$ and $B_{N-1} = 1$, and • the unsigned comparator produces $A < B$. What about when $A_s = B_s$? Flipping the bits then has no effect! Answers are also correct in those cases.	For $A_s = 0$ and $B_s = 1$,	
For $A_s = 0$ and $B_s = 1$, • we feed in $A_{N-1} = 1$ and $B_{N-1} = 0$, and • the unsigned comparator produces $A > B$. For $A_s = 1$ and $B_s = 0$, • we feed in $A_{N-1} = 0$ and $B_{N-1} = 1$, and • the unsigned comparator produces $A < B$. What about when $A_s = B_s$? Flipping the bits then has no effect! Answers are also correct in those cases.	Can we just flip the wires on the sign bits?	
Can we just flip the wires on the sign bits? For $A_s = 0$ and $B_s = 1$, • we feed in $A_{N-1} = 1$ and $B_{N-1} = 0$, and • the unsigned comparator produces $A > B$. For $A_s = 1$ and $B_s = 0$, • we feed in $A_{N-1} = 0$ and $B_{N-1} = 1$, and • the unsigned comparator produces $A < B$. What about when $A_s = B_s$? Flipping the bits then has no effect! Answers are also correct in those cases.		

One Comparator	with a Control Signal can Do	Both
Can we use a single con to perform both kinds of	nparator f comparisons?	
Yes, if we		
• add a control signal S		
• to tell the comparator (S=0) or 2's complem	whether to do unsigned nent (S=1) comparison.	
Simply XOR'ing the m of A and B with S suf	ost significant bits fices.	
 This approach leverage problem to reduce the 	ges flexibility in the	
• Analyze the design to	understand how it works.	
ECE 120: Introduction to Computing	© 2016 Steven S. Lumetta. All rights reserved.	slide 9