University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering
ECE 120: Introduction to Computing
A Comparator for 2's Complement
Ecce 120: Introderction to Computing

Comparing 2's Complement Is Different from Unsigned
University of Illinois at Urbana-Champaign

ECE 120: Introduction to Computing
Let's design a comparator for
2's complement numbers.
Is the function the same as
with unsigned (like addition)?
For unsigned, $1001>0101$.
Is the same true with 2's complement?
No.
Should we just start over?
ECE 120: Introduction to Computing \quad © 2016 Steven S. Lumetta. All rights reserved. \quad slide 2

Start with the Sign Bits

Let's try a little harder first...
If we compare two non-negative numbers,

- the approach IS the same.
- Right?

Maybe we can just use some extra logic to handle the sign bits?

Consider All Possible Combinations of Sign Bits
Let's make a table based on the sign bits:

$\mathbf{A}_{\mathbf{s}}$	$\mathbf{B}_{\mathbf{s}}$	interpretation	solution
$\mathbf{0}$	$\mathbf{0}$	$\mathrm{A} \geq 0$ AND $\mathrm{B} \geq 0$	use unsigned
			comparator
$\mathbf{0}$	$\mathbf{1}$	$\mathrm{A} \geq 0$ AND $\mathrm{B}<0$	$\mathrm{~A}>\mathrm{B}$
$\mathbf{1}$	$\mathbf{0}$	$\mathrm{A}<0$ AND $\mathrm{B} \geq 0$	$\mathrm{~A}<\mathrm{B}$
$\mathbf{1}$	$\mathbf{1}$	$\mathrm{A}<0$ AND $\mathrm{B}<0$	unknown

ECE 120: Introduction to Computing © \quad 2016 Steven S. Lumetta. All rights reserved.

Interpret 2's Complement as Unsigned

Remember our "simple" rule for translating
2's complement bit patterns to decimal?
The pattern $\mathrm{A}=\mathrm{a}_{\mathrm{N}-1} \mathrm{a}_{\mathrm{N}-2} \ldots \mathrm{a}_{1} \mathrm{a}_{0}$
has value $\mathrm{V}_{\mathrm{A}}=-\mathrm{a}_{\mathrm{N}-1} 2^{\mathrm{N}-1}+\mathrm{a}_{\mathrm{N}-2} 2^{\mathrm{N}-2}+\ldots+\mathrm{a}_{0} 2^{0}$
Let A be negative ($\mathrm{a}_{\mathrm{N}-1}=1$).
Interpreted as unsigned, the same bits have value $\mathrm{V}_{\mathrm{A}}+2^{\mathrm{N}}$.*
*The statement is true by definition of 2 's complement, actually.

Negative Numbers Can be Compared Directly

What happens if we feed two negative 2's complement numbers into our unsigned comparator?
We compare $\mathrm{V}_{\mathrm{A}}+2^{\mathrm{N}}$ with $\mathrm{V}_{\mathrm{B}}+2^{\mathrm{N}}$.
And we get an answer: $<,=$, or $>$.
Let's say that we find $\mathrm{V}_{\mathrm{A}}+2^{\mathrm{N}}<\mathrm{V}_{\mathrm{B}}+2^{\mathrm{N}}$.
In that case, $\mathrm{V}_{\mathrm{A}}<\mathrm{V}_{\mathrm{B}}$, so we have the right answer for 2 's complement.
The same result holds for other answers.

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.

We Need Special Logic for the Sign Bits

Now we can complete our table:

$\mathbf{A}_{\mathbf{s}}$	$\mathbf{B}_{\mathbf{s}}$	interpretation	solution
$\mathbf{0}$	$\mathbf{0}$	$\mathrm{A} \geq 0$ AND $\mathrm{B} \geq 0$	use unsigned
			comparator
$\mathbf{0}$	$\mathbf{1}$	$\mathrm{A} \geq 0$ AND $\mathrm{B}<0$	$\mathrm{~A}>\mathrm{B}$
$\mathbf{1}$	$\mathbf{0}$	$\mathrm{A}<0$ AND $\mathrm{B} \geq 0$	$\mathrm{~A}<\mathrm{B}$
$\mathbf{1}$	$\mathbf{1}$	$\mathrm{A}<0$ AND $\mathrm{B}<0$	use unsigned
			comparator

Simply Flip the Wires on the Most Significant Bit

Can we just flip the wires on the sign bits?
For $\mathbf{A}_{\mathrm{s}}=\mathbf{0}$ and $\mathrm{B}_{\mathrm{s}}=\mathbf{1}$,
\circ we feed in $\mathrm{A}_{\mathrm{N}-1}=1$ and $\mathrm{B}_{\mathrm{N}-1}=0$, and

- the unsigned comparator produces $\mathrm{A}>\mathrm{B}$.

For $\mathrm{A}_{\mathrm{s}}=1$ and $\mathrm{B}_{\mathrm{s}}=0$,
\circ we feed in $\mathrm{A}_{\mathrm{N}-1}=0$ and $\mathrm{B}_{\mathrm{N}-1}=1$, and
\circ the unsigned comparator produces $\mathbf{A}<\boldsymbol{B}$.
What about when $A_{s}=B_{s}$?
Flipping the bits then has no effect!
Answers are also correct in those cases.

ECE 120: Introduction to Computing \quad © 2016 Steven S. Lumetta. All rights reserved.

One Comparator with a Control Signal can Do Both
Can we use a single comparator
to perform both kinds of comparisons?
Yes, if we

- add a control signal S
- to tell the comparator whether to do unsigned
($\mathrm{S}=0$) or 2's complement ($\mathrm{S}=1$) comparison.
Simply XOR'ing the most significant bits of A and B with S suffices.
This approach leverages flexibility in the
problem to reduce the logic needed.
- Analyze the design to understand how it works.

